精英家教网 > 高中数学 > 题目详情

【题目】某中学教职工春季竞走比赛在校田径场隆重举行,为了解高三年级男、女两组教师的比赛用时情况,体育组教师从两组教师的比赛成绩中,分别各抽取9名教师的成绩(单位:分钟),制作成下面的茎叶图,但是女子组的数据中有一个数字模糊,无法确认,假设这个数字具有随机性,并在图中以a表示,规定:比赛用时不超过19分钟时,成绩为优秀.
(1)若男、女两组比赛用时的平均值相同,求a的值;
(2)求女子组的平均用时高于男子组平均用时的概率;

【答案】解:(1)依题意,得:
(18+15+16+19+13+21+25+20+23)=(18+16+15+19+19+13+26+21+20+a),
解得 a=3.
(2)设“女子组的平均用时超过男子组平均用时”为事件A,
依题意a=0,1,2,…9,共有10种可能,
由(1)可知,当a=3时男女两组平均用时相同,
所以当a=4时女子组的平均用时超过男子组平均用时,共有6种可能,
所以女子组的平均用时超过男子组平均用时的概率为
【解析】(1)依题意,得(18+15+16+19+13+21+25+20+23)=(18+16+15+19+19+13+26+21+20+a),由此能求出a的值.
(2)设“女子组的平均用时超过男子组平均用时”为事件A,依题意a=0,1,2,…9,共有10种可能,由此能求出女子组的平均用时超过男子组平均用时的概率.
【考点精析】关于本题考查的离散型随机变量及其分布列,需要了解在射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.离散型随机变量的分布列:一般的,设离散型随机变量X可能取的值为x1,x2,.....,xi,......,xn,X取每一个值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,则称表为离散型随机变量X 的概率分布,简称分布列才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆C: (a>b>0)的左焦点为F1(﹣ ,0),e= . (Ⅰ)求椭圆C的方程;
(Ⅱ)如图,设R(x0 , y0)是椭圆C上一动点,由原点O向圆(x﹣x02+(y﹣y02=4引两条切线,分别交椭圆于点P,Q,若直线OP,OQ的斜率存在,并记为k1 , k2 , 求证:k1k2为定值;
(Ⅲ)在(Ⅱ)的条件下,试问OP2+OQ2是否为定值?若是,求出该值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数.

(1)当时,解不等式

(2)若命题“”为真命题,求实数的取值范围;

(3)若关于的方程的解集中恰好有一个元素,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知 ,平面平面 中点.

(Ⅰ)证明: 平面

(Ⅱ)求直线与平面所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代数学家祖暅提出原理:“幂势既同,则积不容异”.其中“幂”是截面积,“势”是几何体的高.原理的意思是:夹在两个平行平面间的两个几何体,被任一平行于这两个平行平面的平面所截,若所截的两个截面的面积恒相等,则这两个几何体的体积相等.如图所示,在空间直角坐标系的坐标平面内,若函数的图象与轴围成一个封闭区域,将区域沿轴的正方向上移4个单位,得到几何体如图一.现有一个与之等高的圆柱如图二,其底面积与区域面积相等,则此圆柱的体积为( )

A. B. C. 2D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设k>0,函数f(x)=+x+kln|x﹣1|.
(1)讨论函数f(x)的单调性;
(2)当函数f(x)有两个极值点,且0<θ<π时,证明:(2k﹣1)sinθ+(1﹣k)sin[(1﹣k)θ]>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,且满足.

(I)求证:是等比数列;

(II)求证:不是等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在原点,焦点在x轴上,离心率为 , 且经过点M(4,1),直线l:y=x+m交椭圆于不同的两点A,B.
(Ⅰ)求椭圆的方程;
(Ⅱ)求m的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学在校就餐的高一年级学生有440名,高二年级学生有460名,高三年级学生有500名;为了解学校食堂的服务质量情况,用分层抽样的方法从中抽取70名学生进行抽样调查,把学生对食堂的“服务满意度”与“价格满意度”都分为五个等级:1级(很不满意);2级(不满意);3级(一般);4级(满意);5级(很满意),其统计结果如下表(服务满意度为x,价格满意度为y).

y
人数
x

价格满意度

1

2

3

4

5





1

1

1

2

2

0

2

2

1

3

4

1

3

3

7

8

8

4

4

1

4

6

4

1

5

0

1

2

3

1

(1)求高二年级共抽取学生人数;
(2)求“服务满意度”为3时的5个“价格满意度”数据的方差;
(3)为提高食堂服务质量,现从x<3且2≤y<4的所有学生中随机抽取两人征求意见,求至少有一人的“服务满意度”为1的概率.

查看答案和解析>>

同步练习册答案