精英家教网 > 高中数学 > 题目详情
12.已知函数$f(x)={log_2}(1+\frac{1}{x})$.
(1)求使f(x)>1的x的取值范围;
(2)计算f(1)+f(2)+…+f(127)的值.

分析 (1)利用对数函数的性质,化简不等式求解即可.
(2)利用导数的运算性质,化简求解即可.

解答 解:(1)由已知得${log_2}(1+\frac{1}{x})>1⇒{log_2}(1+\frac{1}{x})>{log_2}2⇒1+\frac{1}{x}>2⇒\frac{1}{x}>1⇒0<x<1$….(6分)
(2)f(1)+f(2)+f(3)+f(4)+…f(127)=${log_2}2+{log_2}(1+\frac{1}{2})+{log_2}(1+\frac{1}{3})+lo{g_2}(1+\frac{1}{4})+…+{log_2}(1+\frac{1}{127})$…(7分)
=${log_2}[2(1+\frac{1}{2})(1+\frac{1}{3})(1+\frac{1}{4})…(1+\frac{1}{127})]$…..(9分)
=${log_2}[2×\frac{3}{2}×\frac{4}{3}×\frac{5}{4}×…×\frac{128}{127}]$=${log_2}128={log_2}{2^7}=7$….(12分)

点评 本题考查大苏打运算法则的应用,函数值的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.甲乙两人独立地对同一目标各射击一次,命中率分别为0.6和0.5,现已知目标被击中,则它是被甲击中的概率为0.75.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知P(8,a)在抛物线y2=4px上,且P到焦点的距离为10,则焦点到准线的距离为(  )
A.2B.4C.8D.16

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数$f(x)=\left\{\begin{array}{l}x(1+x),_{\;}^{\;}x≥0\\ x(1-x){,_{\;}}x<0\end{array}\right.$的单调性为增函数;奇偶性为奇函数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知数列{an}为等比数列,a1=3,a4=81,若数列{bn}满足bn=(n+1)log3an,则{$\frac{1}{{b}_{n}}$}的前n项和Sn=$\frac{n}{n+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,有一块半径为2的半圆形纸片,计划剪裁成等腰梯形ABCD的形状,它的下底AB是⊙O的直径,上底CD的端点在圆周上,设CD=2x,梯形ABCD的周长为y.
(1)求出y关于x的函数f(x)的解析式;
(2)求y的最大值,并指出相应的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在正方体ABCD-A1B1C1D1中,点E,F分别是上底面A1B1C1D1和侧面CDD1C1的中心.
(1)求cos∠EAF;
(2)求直线AE与平面CDD1C1所成角的正弦值;
(3)求直线AF与平面BDD1B1所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.行列式$\left|\begin{array}{l}cos20°\\ sin20°\end{array}\right.\left.\begin{array}{l}sin40°\\ cos40°\end{array}\right|$的值是$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某家公司每月生产两种布料A和B,所有原料是两种不同颜色的羊毛,如表给出了生产每匹每种布料所需的羊毛量,以及可供使用的每种颜色的羊毛的总量.
羊毛颜色每匹需要 ( kg)供应量(kg)
布料A布料B
441400
绿631800
已知生产每匹布料A、B的利润分别为120元、80元.那么如何安排生产才能够产生最大的利润?最大的利润是多少?

查看答案和解析>>

同步练习册答案