精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,平面平面,四边形为矩形,的中点,的中点.

(1)求证:

(2)求证:平面.

【答案】(1)见证明;(2)见证明

【解析】

1)由矩形的性质可得ABAD,利用面面垂直的性质可求AB⊥平面PAD,利用线面垂直的性质可证ABPD2)取PD的中点E,连接AEME,利用中位线的性质可证四边形ANME为平行四边形,进而可证MN∥平面PAD

证明:(1)因为四边形为矩形,所以.

因为平面平面

平面平面

平面,所以平面

因为平面,所以

(2)取的中点,连接

中,的中点,的中点,

所以的中位线,

所以

在矩形中,

所以

因为中点,所以

所以四边形ANME为平行四边形.

所以

因为平面平面

所以平面.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,平面平面,其中为矩形,为梯形,.

(Ⅰ)求证:平面

(Ⅱ)若二面角的平面角的余弦值为,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

(Ⅰ)求证:

(Ⅱ)求证:

(Ⅲ)在(Ⅱ)中的不等式中,能否找到一个代数式,满足所求式?若能,请直接写出该代数式;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)试求f(x)的单调区间;
(2)求证:不等式对于x∈(1,2)恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若数列的前项和为,则下列命题:(1)若数列是递增数列,则数列也是递增数列;(2)数列是递增数列的充要条件是数列的各项均为正数;(3)若是等差数列(公差),则的充要条件是;(4)若是等比数列,则的充要条件是.其中,正确命题的个数是(  )

A. 0个B. 1个C. 2个D. 3个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种商品原来每件售价为25元,年销售量8万件.

(1)据市场调查,若价格每提高1元,销售量将相应减少2000件,要使销售的总收入不低于原收入,该商品每件定价最多为多少元?

(2)为了扩大该商品的影响力,提高年销售量.公司决定明年对该商品进行全面技术革新和营销策略改革,并提高定价到元.公司拟投入万元作为技改费用,投入50万元作为固定宣传费用,投入万元作为浮动宣传费用.试问:当该商品明年的销售量a至少应达到多少万件时,才可能使明年的销售收入不低于原收入与总投入之和?并求出此时商品的每件定价.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)的导函数为f′(x),若f(x)=ex﹣f(0)x+x2(e是自然对数的底数).
(1)求f(0)和f′(1)的值;
(2)若g(x)=x2+a与函数f(x)的图象在区间[﹣1,2]上恰有2两个不同的交点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校有初级教师21人,中级教师14人,高级教师7人,现采用分层抽样的方法从这些教师中抽取6人对绩效工资情况进行调查.

(1)求应从初级教师,中级教师,高级教师中分别抽取的人数;

(2)若从抽取的6名教师中随机抽取2名做进一步数据分析,求抽取的2名均为初级教师的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知圆,点,过点的直线与圆交于不同的两点(不在y轴上)

1)若直线的斜率为3,求的长度;

2)设直线的斜率分别为,求证:为定值,并求出该定值;

3)设的中点为,是否存在直线,使得?若存在,求出直线的方程;若不存在,说明理由.

查看答案和解析>>

同步练习册答案