分析 (1)由正弦定理化简已知的式子,由内角和定理、诱导公式、两角和差的正弦公式化简后,由内角的范围和特殊角的三角函数值求出A;
(2)由(1)和余弦定理列出方程,代入数据求出bc的值,由三角形的面积公式求出答案.
解答 解:(1)由acos C+$\sqrt{3}$asin C-b-c=0和正弦定理得,
sin Acos C+$\sqrt{3}$sin Asin C-sin B-sin C=0.
因为B=π-A-C,
所以sin Acos C+$\sqrt{3}$sin Asin C-sin(A+C)-sin C=0.
化简得,$\sqrt{3}$sin Asin C-cos Asin C-sin C=0,
由于sin C≠0,所以$\sqrt{3}$sin A-cosA=1,
所以$sin(A-\frac{π}{6})=\frac{1}{2}$,
又0<A<π,故A=$\frac{π}{3}$.…(5分)
(2)由(1)和余弦定理得,
a2=b2+c2-2bccosA=(b+c)2-3bc,
因为a=7,b+c=11,所以bc=24,
所以△ABC的面积:
$S=\frac{1}{2}bcsinA=\frac{1}{2}×24×\frac{\sqrt{3}}{2}=6\sqrt{3}$…(10分)
点评 本题考查了正弦定理、余弦定理,三角形的面积公式,以及两角和差的正弦公式等,注意内角的范围,考查化简、变形能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1 | B. | 2 | C. | 1或2 | D. | -1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 内切 | B. | 外切 | C. | 相交 | D. | 相离 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com