精英家教网 > 高中数学 > 题目详情
11.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知$acosC+\sqrt{3}asinC-b-c=0$.
(1)求角A的大小;
(2)若a=7,b+c=11,求△ABC的面积.

分析 (1)由正弦定理化简已知的式子,由内角和定理、诱导公式、两角和差的正弦公式化简后,由内角的范围和特殊角的三角函数值求出A;
(2)由(1)和余弦定理列出方程,代入数据求出bc的值,由三角形的面积公式求出答案.

解答 解:(1)由acos C+$\sqrt{3}$asin C-b-c=0和正弦定理得,
sin Acos C+$\sqrt{3}$sin Asin C-sin B-sin C=0.
因为B=π-A-C,
所以sin Acos C+$\sqrt{3}$sin Asin C-sin(A+C)-sin C=0.
化简得,$\sqrt{3}$sin Asin C-cos Asin C-sin C=0,
由于sin C≠0,所以$\sqrt{3}$sin A-cosA=1,
所以$sin(A-\frac{π}{6})=\frac{1}{2}$,
又0<A<π,故A=$\frac{π}{3}$.…(5分)
(2)由(1)和余弦定理得,
a2=b2+c2-2bccosA=(b+c)2-3bc,
因为a=7,b+c=11,所以bc=24,
所以△ABC的面积:
$S=\frac{1}{2}bcsinA=\frac{1}{2}×24×\frac{\sqrt{3}}{2}=6\sqrt{3}$…(10分)

点评 本题考查了正弦定理、余弦定理,三角形的面积公式,以及两角和差的正弦公式等,注意内角的范围,考查化简、变形能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.已知向量$\overrightarrow a$与$\overrightarrow b$的夹角为120°,且$\overrightarrow a=(-2,-6)$,$|\overrightarrow b|=\sqrt{10}$,则$\overrightarrow a•\overrightarrow b$=-10.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.一元二次方程x2=4x的根是(  )
A.4B.±2C.0或2D.0或4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.给出如图的一个算法的程序框图,则输出S的值是(  )
A.15B.31C.63D.32

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在平面直角坐标系xOy中,椭圆E:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,椭圆E的顶点四边形的面积为16.
(Ⅰ)求椭圆E的方程;
(Ⅱ)过椭圆E的顶点P(0,b)的直线l交椭圆于另一点M,交x轴于点N,若|PN|、|PM|、|MN|成等比数列,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.复数z=a2-2+(3a-4)i(a∈R)的实部与虚部相等,且z在复平面上对应的点在第三象限,则a=(  )
A.1B.2C.1或2D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.等比数列{an}中,公比为2,前四项和等于1,则前8项和等于17.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.数列2,5,10,17,…的一个通项公式为(  )
A.2nB.n2+nC.2n-1D.n2+1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.圆${C_1}:{({x-1})^2}+{y^2}=1$与圆${C_2}:{({x+3})^2}+{({y-2})^2}=4$的位置关系是(  )
A.内切B.外切C.相交D.相离

查看答案和解析>>

同步练习册答案