精英家教网 > 高中数学 > 题目详情

【题目】已知四面体ABCDABBCDBCDCBEAD垂足为EFCD中点,ABBD2CD1

1)求证:ACBEF

2)求点B到面ACD的距离.

【答案】1)见解析;(2.

【解析】

1)先证得,然后利用直线与平面平行的判定定理,即可证得AC∥面BEF

2)设点到平面的距离为,利用,即可求得点B到面ACD的距离.

1)因为BEADABBD,所以EAD中点,

又因为FCD中点,所以ACEF

ACBEFEFBEF,所以AC∥面BEF.

2)由已知,可得BCADAC

因为,所以为直角三角形其面积

又由BCDC,且,所以,

BCD的面积

设点B到面ACD的距离为h

因为VABCDVBACD,即,解得

所以点B到面ACD的距离为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】孝感市某中学为了解中学生的课外阅读时间,决定在该中学的1200名男生和800名女生中用分层抽样的方法抽取20名学生,对他们的课外阅读时间进行问卷调查.现在按课外阅读时间的情况将学生分成三类:类(不参加课外阅读),类(参加课外阅读,但平均每周参加课外阅读的时间不超过3小时),类(参加课外阅读,且平均每周参加课外阅读的时间超过3小时).调查结果如表:

男生

5

3

女生

3

3

1)求出表中的值;

2)根据表中的统计数据,完成下面的列联表,井判断是否有90%的把握认为“参加阅读与否”与性别有关;

男生

女生

总计

不参加课外阅读

参课外阅读

总计

3)从抽出的女生中再随机抽取3人进一步了解情况,记X为抽取的这3名女生中A类女生人数,求X的数学期望.

附:.

0.10

0.05

0.01

2.706

3.841

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面.为线段上的点.

(I)证明:

(Ⅱ)若的中点,求与平面所成的角的正弦值;

(Ⅲ)若满足,求二面角正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,圆Ox轴于点F1F2,交y轴于点B1B2.以B1B2为顶点,F1F2分别为左、右焦点的椭圆E,恰好经过点

1)求椭圆E的标准方程;

2)设经过点(﹣20)的直线l与椭圆E交于MN两点,求△F2MN面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校学生社团组织活动丰富,学生会为了解同学对社团活动的满意程度,随机选取了100位同学进行问卷调查,并将问卷中的这100人根据其满意度评分值(百分制)按照[4050),[5060),[6070),[90100]分成6组,制成如图所示频率分布直方图.

1)求图中x的值;

2)求这组数据的中位数;

3)现从被调查的问卷满意度评分值在[6080)的学生中按分层抽样的方法抽取5人进行座谈了解,再从这5人中随机抽取2人作主题发言,求抽取的2人恰在同一组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线Cy2=4x的焦点为F,过点F且斜率为1的直线与抛物线C交于AB两点,若在以线段AB为直径的圆上存在两点MN,在直线x+y+a=0上存在一点Q,使得MQN=90°,则实数a的取值范围为(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂对一批新产品的长度(单位:)进行检测,如下图是检测结果的频率分布直方图,据此估计这批产品的中位数与平均数分别为( )

A.20,22.5B.22.5,25C.22.5,22.75D.22.75,22.75

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商店为了更好地规划某种商品进货的量,该商店从某一年的销售数据中,随机抽取了组数据作为研究对象,如下表所示((吨)为该商品进货量,(天)为销售天数):

2

3

4

5

6

8

9

11

1

2

3

3

4

5

6

8

(Ⅰ)根据上表提供的数据,求出关于的线性回归方程

(Ⅱ)在该商品进货量(吨)不超过(吨)的前提下任取两个值,求该商品进货量(吨)恰有一个值不超过(吨)的概率.

参考公式和数据:..

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】光线从椭圆的一个焦点发出,被椭圆反射后会经过椭圆的另一个焦点;光线从双曲线的一个焦点发出,被双曲线反射后的反射光线等效于从另一个焦点射出.如图,一个光学装置由有公共焦点,的椭圆与双曲线构成,现一光线从左焦点发出,依次经反射,又回到了点,历时秒;若将装置中的去掉,此光线从点发出,经两次反射后又回到了点,历时秒;若,则的离心率之比为( )

A. B.C.D.

查看答案和解析>>

同步练习册答案