精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)x2ex (x0)g(x)x2ln(xa)图象上存在关于y轴对称的点a的取值范围是(  )

A. () B. ()

C. ( ) D. ( )

【答案】B

【解析】由题可得存在x0(0)满足f(x0)g(x0) ex0(x0)2ln(x0a)ex0ln(x0a)0

h(x)exln(xa)

因为函数yexy=-ln(xa)在定义域内都是单调递增的

所以函数h(x)exln(xa)在定义域内是单调递增的

又因为x趋近于-∞函数h(x)0h(x)0(0)上有解(即函数h(x)有零点)

所以h(0)e0ln(0a)0lnalna故选B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图AB为圆O的直径EF在圆OAB EF矩形ABCD所在平面与圆O所在的平面互相垂直已知AB2EF1.

(1)求证平面DAF⊥平面CBF

(2)求直线AB与平面CBF所成角的大小

(3)AD的长为何值时平面DFC与平面FCB所成的锐二面角的大小为60°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的焦点是椭圆的顶点 为椭圆的左焦点且椭圆经过点.

1)求椭圆的方程

2)过椭圆的右顶点作斜率为的直线交椭圆于另一点连结并延长交椭圆于点的面积取得最大值时,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是正三棱柱,DAC中点.

(1)证明: 平面;

(2)若,求二面角的度数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆锥曲线 为参数)和定点 是此圆锥曲线的左、右焦点.

(1)以原点为极点,以轴的正半轴为极轴建立极坐标系,求直线的极坐标方程;

(2)经过且与直线垂直的直线交此圆锥曲线 两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)在点(1,1)处的切线方程为xy2.

(1)ab的值;

(2)对函数f(x)定义域内的任一个实数x不等式f(x)0恒成立求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中a∈R.

Ⅰ)a1时,判断fx)的单调性;

Ⅱ)gx)在其定义域内为增函数,求正实数a的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图在三棱锥PABCDEF分别为PCACAB的中点已知PAACPA6BC8DF5.

求证(1)直线PA∥平面DEF

(2)平面BDE⊥平面ABC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面直角坐标系xOy中,椭圆C=1 (a>b>0)的离心率是,抛物线Ex2=2y的焦点FC的一个顶点.

(1)求椭圆C的方程;

(2)设PE上的动点,且位于第一象限,E在点P处的切线lC交于不同的两点AB,线段AB的中点为D.直线OD与过P且垂直于x轴的直线交于点M.

①求证:点M在定直线上;

②直线ly轴交于点G,记△PFG的面积为S1,△PDM的面积为S2,求的最大值及取得最大值时点P的坐标.

查看答案和解析>>

同步练习册答案