精英家教网 > 高中数学 > 题目详情
已知函数,其中实数a为常数.
(I)当a=-l时,确定的单调区间:
(II)若f(x)在区间(e为自然对数的底数)上的最大值为-3,求a的值;
(Ⅲ)当a=-1时,证明
(Ⅰ)在区间上为增函数,在区间上为减函数.(Ⅱ). (Ⅲ) 见解析.

试题分析:(Ⅰ)通过求导数,时,时,,单调函数的单调区间.
(Ⅱ)遵循“求导数,求驻点,讨论区间导数值正负,确定端点函数值,比较大小”等步骤,得到的方程.注意分①;②;③,等不同情况加以讨论.
(Ⅲ) 根据函数结构特点,令,利用“导数法”,研究有最大值,根据, 得证.
试题解析:(Ⅰ)当时,,∴,又,所以
时,在区间上为增函数,
时,在区间上为减函数,
在区间上为增函数,在区间上为减函数.    4分
(Ⅱ)∵,①若,∵,则在区间上恒成立,
在区间上为增函数,,∴,舍去;
②当时,∵,∴在区间上为增函数,
,∴,舍去;
③若,当时,在区间上为增函数,
时, 在区间上为减函数,
,∴.
综上.                                    9分
(Ⅲ) 由(Ⅰ)知,当时,有最大值,最大值为,即
所以,                              10分
,则
时,在区间上为增函数,
时,在区间上为减函数,
所以当时,有最大值,12分
所以,
.                            13分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数为自然对数的底数).
(1)求函数上的单调区间;
(2)设函数,是否存在区间,使得当时函数的值域为,若存在求出,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题13分) 已知函数为自然对数的底数)。
(1)若,求函数的单调区间;
(2)是否存在实数,使函数上是单调增函数?若存在,求出的值;若不存在,请说明理由。恒成立,则,又

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,其中
(Ⅰ) 当,求函数的单调递增区间;
(Ⅱ)若时,函数有极值,求函数图象的对称中心的坐标;
(Ⅲ)设函数 (是自然对数的底数),是否存在a使上为减函数,若存在,求实数a的范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)求函数的极值点;
(2)若上为单调函数,求的取值范围;
(3)设,若在上至少存在一个,使得成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(Ⅰ)若,求函数的极值,并指出是极大值还是极小值;
(Ⅱ)若,求证:在区间上,函数的图像在函数的图像的下方.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知,现给出如下结论:
;②;③;④.
其中正确结论的序号为(   )
A.①③B.①④C.②④D.②③

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

,且函数上存在反函数,则(    )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数的对称中心为,记函数的导函数为的导函数为,则有.若函数,则可求得_________.

查看答案和解析>>

同步练习册答案