精英家教网 > 高中数学 > 题目详情
13.设函数$f(x)=cos(2x+\frac{π}{3})+1$,如下结论中正确的是②③⑤.(写出所有正确结论的编号):
①点$(-\frac{5}{12}π,0)$是函数f(x)图象的一个对称中心;
②直线x=$\frac{π}{3}$是函数f(x)图象的一条对称轴; 
③函数f(x)的最小正周期是π;
④函数f(x)在$[-\frac{π}{6},\frac{π}{3}]$上为增函数;
⑤将函数f(x)的图象向右平移$\frac{π}{6}$个单位后,对应的函数是偶函数.

分析 ①,(-$\frac{5π}{12},1$)是函数f(x)图象的一个对称中心;
②,f($\frac{π}{3}$)=0为最小值,故直线x=$\frac{π}{3}$是函数f(x)图象的一条对称轴;
③,根据函数f(x)的正周期计算法则可得;
④,2×(-$\frac{π}{6}$)=-$\frac{π}{2}$,2×$\frac{π}{6}$=$\frac{π}{2}$,函数y=cosx在(-$\frac{π}{2},\frac{π}{2}$)上不单调;
⑤,将函数f(x)的图象向右平移$\frac{π}{6}$个单位后,对应的函数是y=cos2x+1,是偶函数;

解答 解:对于①,∵(-$\frac{5π}{12},1$)是函数f(x)图象的一个对称中心,故错;
对于②,∵f($\frac{π}{3}$)=0为最小值,故直线x=$\frac{π}{3}$是函数f(x)图象的一条对称轴,正确;
对于③,函数f(x)的最小正周期是π,正确;
对于④,2×(-$\frac{π}{6}$)=-$\frac{π}{2}$,2×$\frac{π}{6}$=$\frac{π}{2}$,函数y=cosx在(-$\frac{π}{2},\frac{π}{2}$)上不单调,故错;
对于⑤,将函数f(x)的图象向右平移$\frac{π}{6}$个单位后,对应的函数是y=cos2x+1,是偶函数,故正确;
故答案为:②③⑤

点评 本题考查了三角函数的图象及性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.设二次函数f(x)=x2+ax+a.
(1)若方程f(x)-x=0的两实根x1和x2满足0<x1<x2<1.求实数a的取值范围.
(2)求函数g(x)=af(x)-a2(x+1)-2x在区间[0,1]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在四棱锥P-ABCD中,PC⊥底面ABCD,底面ABCD是矩形,BC=PC,E是PA的中点.
(1)求证:平面PBM⊥平面CDE;
(2)已知点M是AD的中点,点N是AC上一点,且平面PDN∥平面BEM.若BC=2AB=4,求点N到平面CDE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=ex(e为自然对数的底数),g(x)=$\frac{a}{2}$x+b(a,b∈R).
(1)若h(x)=f(x)g(x),b=1-$\frac{a}{2}$且a=-4,求h(x)在[0,1]上的最大值;
(2)若a=4时,方程f(x)=g(x)在[0,2]上恰有两个相异实根,求实数b的取值范围;
(3)若b=-$\frac{15}{2}$,a∈N*,求使f(x)的图象恒在g(x)图象上方的最大正整数a.(2.71<e<2.72)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知a、b为直线,a、β、γ为平面,下列两个命题
(1)a⊥γ、b⊥γ、则a∥b
(2)a⊥b、a⊥α、则b∥α
其中有一个命题是正确的,正确的命题序号是(1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设f(x)是定义在R上的奇函数,且在区间(0,+∞)上单调递增,若f($\frac{1}{2}$)=0,△ABC的内角A满足f(cosA)<0,则A的取值范围是($\frac{π}{3}$,$\frac{π}{2}$)∪($\frac{2π}{3}$,π).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数f(x)=ln|x-1|+2cosπx(-2≤x≤4)的所有零点之和等于(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=cos(ωx+φ)(ω>0),x=-$\frac{π}{8}$是y=f(x)的零点,直线x=$\frac{3π}{8}$为y=f(x)图象的一条对称轴,且函数f(x)在区间($\frac{π}{12}$,$\frac{5π}{24}$)上单调,则ω的最大值是(  )
A.9B.7C.5D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在复平面内,复数${({1-\sqrt{2}i})^2}$对应的点P位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步练习册答案