【题目】某工厂改造一废弃的流水线M,为评估流水线M的性能,连续两天从流水线M生产零件上随机各抽取100件零件作为样本,测量其直径后,整理得到下表:记抽取的零件直径为X.
第一天
直径/mm | 58 | 59 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 73 | 合计 |
件数 | 1 | 1 | 3 | 5 | 6 | 19 | 33 | 18 | 4 | 4 | 2 | 1 | 2 | 1 | 100 |
第二天
直径/mm | 58 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 73 | 合计 |
件数 | 1 | 1 | 2 | 4 | 5 | 21 | 34 | 21 | 3 | 3 | 2 | 1 | 1 | 1 | 100 |
经计算,第一天样本的平均值,标准差第二天样本的平均值,标准差
(1)现以两天抽取的零件来评判流水线M的性能.
(i)计算这两天抽取200件样本的平均值和标准差(精确到0.01);
(ii)现以频率值作为概率的估计值,根据以下不等式进行评判(P表示相应事件的概率),①;②;③评判规则为:若同时满足上述三个不等式,则设备等级为优;仅满足其中两个,则等级为良;若仅满足其中一个,则等级为合格;若全部不满足,则等级为不合格,试判断流水线M的性能等级.
(2)将直径X在范围内的零件认定为一等品,在范围以外的零件认定为次品,其余认定为合格品.现从200件样本除一等品外的零件中抽取2个,设为抽到次品的件数,求分布列及其期望.
附注:参考数据:,,;
参考公式:标准差.
【答案】(1)(i),;(ii)合格;(2)分布列见解析,
【解析】
(1)(ⅰ)因为两天100个零件的平均值都是65,所以200个零件的平均值也是65,按照公式计算标准差;(ⅱ)分别计算的概率,然后比较等级;
(2)由(ⅱ)可知200件零件中合格品7个,次品4个,的可能取值为0,1,2,利用超几何分布计算概率,并求分布列和数学期望.
(1)(i)依题意:200个零件的直径平均值为由标准差公式得:
第一天:,第二天:,
则
故(注:如果写出不给分)
(ii)由(1)可知:,
,
仅满足一个不等式,判断流水线M的等级为合格.
(2)可知200件零件中合格品7个,次品4个,的可能取值为0,1,2,则
,,,
的分布列
0 | 1 | 2 | |
P |
则
科目:高中数学 来源: 题型:
【题目】已知某校一间办公室有四位老师甲、乙、丙、丁.在某天的某个时段,他们每人各做一项工作,一人在查资料,一人在写教案,一人在批改作业,另一人在打印材料.
若下面4个说法都是正确的:
①甲不在查资料,也不在写教案; ②乙不在打印材料,也不在查资料;
③丙不在批改作业,也不在打印材料; ④丁不在写教案,也不在查资料.
此外还可确定:如果甲不在打印材料,那么丙不在查资料.根据以上信息可以判断
A.甲在打印材料 | B.乙在批改作业 | C.丙在写教案 | D.丁在打印材料 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4-4:坐标系与参数方程]
已知曲线的极坐标方程为,以极点为直角坐标原点,以极轴为轴的正半轴建立平面直角坐标系,将曲线向左平移个单位长度,再将得到的曲线上的每一个点的横坐标缩短为原来的,纵坐标保持不变,得到曲线
(1)求曲线的直角坐标方程;
(2)已知直线的参数方程为,(为参数),点为曲线上的动点,求点到直线距离的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线,过抛物线C的焦点F的直线l交抛物线C于A,B两点,且A,B两点在抛物线C的准线上的投影分别P、Q.
(1)已知,若,求直线l的方程;
(2)设P、Q的中点为M,请判断PF与MB的位置关系并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市教育局为了监控某校高一年级的素质教育过程,从该校高一年级16个班随机抽取了16个样本成绩,制表如下:
抽取次序 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
测评成绩 | 95 | 96 | 96 | 90 | 95 | 98 | 98 | 97 |
抽取次序 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
测评成绩 | 97 | 95 | 96 | 98 | 99 | 96 | 99 | 96 |
令为抽取的第个学生的素质教育测评成绩,,经计算得,,,,以下计算精确到0.01.
(1)求的相关系数,并回答与是否可以认为具有较强的相关性;
(2)在抽取的样本成绩中,如果出现了在之外的成绩,就认为本学期的素质教育过程可能出现了异常情况,需对本学期的素质教学过程进行反思,同时对下学期的素质教育过程提出指导性的建议,从该校抽样的结果来看,是否需对本学期的素质教学过程进行反思,同时对下学期的素质教育过程提出指导性的建议?
附:样本的相关系数,若,则可以认为两个变量具有较强的线性相关性.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着生活水平的提高和人们对健康生活的重视,越来越多的人加入到健身运动中.国家统计局数据显示,2019年有4亿国人经常参加体育锻炼.某健身房从参与健身的会员中随机抽取100人,对其每周参与健身的天数和2019年在该健身房所有消费金额(单位:元)进行统计,得到以下统计表及统计图:
平均每周健身天数 | 不大于2 | 3或4 | 不少于5 |
人数(男) | 20 | 35 | 9 |
人数(女) | 10 | 20 | 6 |
若某人平均每周进行健身天数不少于5,则称其为“健身达人”.该健身房规定消费金额不多于1600元的为普通会员,超过1600元但不超过3200元的为银牌会员,超过3200元的为金牌会员.
(1)已知金牌会员都是健身达人,现从健身达人中随机抽取2人,求他们均是金牌会员的概率;
(2)能否在犯错误的概率不超过的前提下认为性别和是否为“健身达人”有关系?
(3)该健身机构在2019年年底针对这100位消费者举办一次消费返利活动,现有以下两种方案:
方案一:按分层抽样从普通会员、银牌会员和金牌会员中共抽取25位“幸运之星”,分别给予188元,288元,888元的幸运奖励;
方案二:每位会员均可参加摸奖游戏,游戏规则如下:摸奖箱中装有5张形状大小完全一样的卡片,其中3张印跑步机图案、2张印动感单车图案,有放回地摸三次卡片,每次只能摸一张,若摸到动感单车的总数为2,则获得100元奖励,若摸到动感单车的总数为3,则获得200元奖励,其他情况不给予奖励.规定每个普通会员只能参加1次摸奖游戏,每个银牌会员可参加2次摸奖游戏,每个金牌会员可参加3次摸奖游戏(每次摸奖结果相互独立).
请你比较该健身房采用哪一种方案时,在此次消费返利活动中的支出较少,并说明理由.
附:,其中为样本容量.
0.50 | 0.25 | 0.10 | 0.05 | 0.010 | 0.005 | |
0.455 | 1.323 | 2.706 | 3.841 | 6.636 | 7.879 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com