【题目】设a,b为两条直线,α,β为两个平面,下列四个命题中,正确的命题是( )
A.若a,b与α所成的角相等,则α∥b
B.若a∥α,b∥β,α∥β,则a∥b
C.若aα,bβ,α∥b,则α∥β
D.若a⊥α,b⊥β,α⊥β,是a⊥b
【答案】D
【解析】解:A、直线a,b的方向相同时才平行,不正确;
B、用长方体验证.如图,设A1B1为a,平面AC为α,BC为b,平面A1C1为β,显然有a∥α,b∥β,α∥β,但得不到a∥b,不正确;
C、可设A1B1为a,平面AB1为α,CD为b,平面AC为β,满足选项C的条件却得不到α∥β,不正确;
D、∵a⊥α,α⊥β,
∴aβ或a∥β
又∵b⊥β
∴a⊥b
故选D
【考点精析】利用空间中直线与直线之间的位置关系和空间中直线与平面之间的位置关系对题目进行判断即可得到答案,需要熟知相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线: 不同在任何一个平面内,没有公共点;直线在平面内—有无数个公共点;直线与平面相交—有且只有一个公共点;直线在平面平行—没有公共点.
科目:高中数学 来源: 题型:
【题目】已知点A(1,3)B(3,1),C(﹣1,0)求:
(1)求BC及BC边上的中线所在直线的方程;
(2)求BC边上的垂直平分线所在直线方程;
(3)求△ABC的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两位同学玩游戏,对于给定的实数a1 , 按下列方法操作一次产生一个新的实数:由甲、乙同时各掷一枚均匀的硬币,如果出现两个正面朝上或两个反面朝上,则把a1乘以2后再减去12;如果出现一个正面朝上,一个反面朝上,则把a1除以2后再加上12,这样就可以得到一个新的实数a2 , 对实数a2仍按上述方法进行一次操作,又得到一个新的实数a3 , 当a3>a1 , 甲获胜,否则乙获胜,若甲获胜的概率为 ,则a1的取值范围是( )
A.(﹣∞,12]
B.[24,+∞)
C.(12,24)
D.(﹣∞,12]∪[24,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设进入某商场的每一位顾客购买甲种商品的概率为0.5,购买乙种商品的概率为0.6,且购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的.
(1)求进入商场的1位顾客购买甲、乙两种商品中的一种的概率;
(2)求进入商场的1位顾客至少购买甲、乙两种商品中的一种的概率;
(3)记ξ表示进入商场的3位顾客中至少购买甲、乙两种商品中的一种的人数,求ξ的分布列及期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列三个类比结论.
①(ab)n=anbn与(a+b)n类比,则有(a+b)n=an+bn;
②loga(xy)=logax+logay与sin(α+β)类比,则有sin(α+β)=sinαsinβ;
③(a+b)2=a2+2ab+b2与( + )2类比,则有( + )2= 2+2 + 2;
其中结论正确的个数是( )
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知:sin230°+sin290°+sin2150°= ,sin25°+sin265°+sin2125°= .通过观察上述两等式的规律,请你写出一般性的命题,并给出证明.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知F为椭圆C: + =1的右焦点,椭圆C上任意一点P到点F的距离与点P到直线l:x=m的距离之比为 ,求:
(1)直线l方程;
(2)设A为椭圆C的左顶点,过点F的直线交椭圆C于D、E两点,直线AD、AE与直线l分别相交于M、N两点.以MN为直径的是圆是否恒过一定点,若是,求出定点坐标,若不是请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com