精英家教网 > 高中数学 > 题目详情

【题目】如图,四棱锥P-ABCD中,底面ABCD是边长为2的正方形,,且EPD中点.

I)求证:平面ABCD

II)求二面角B-AE-C的正弦值.

【答案】I)见解析(II

【解析】

I)根据题目所给条件,利用直线与平面垂直的判定方法分别证明出平面PAB以及平面,进而得到,从而推得线面垂直。

II)根据已知条件,以A为原点,AB轴,AD轴,AP轴建立直角坐标系,分别求出平面ABE和平面AEC的法向量,最后利用向量法求出二面角B-AE-C的正弦值。

解:(I)证明:∵底面ABCD为正方形,

,又

平面PAB,∴

同理,∴平面ABCD

II)建立如图的空间直角坐标系A-xyz

易知

为平面ABE的一个法向量,

,∴,得.

为平面AEC的一个法向量,又

.

∴二面角B-AE-C的正弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数).

(Ⅰ)当时,求不等式的解集;

(Ⅱ)求证:,并求等号成立的条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数fx)满足条件f0)=1,及fx+1)﹣fx)=2x

1)求函数fx)的解析式;

2)在区间[11]上,yfx)的图象恒在y2x+m的图象上方,试确定实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调性;

(2)记的导函数,如果是函数的两个零点,且满足,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知幂函数上单调递增,又函数.

(1)求实数的值,并说明函数的单调性;

(2)若不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某几何体的三视图如图2所示(小正方形的边长为),则该几何体的外接球的表面积为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱柱中,侧面是边长为2的菱形,.

(Ⅰ)证明:

(Ⅱ)若底面是以为直角顶点的直角三角形,且,求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若某校研究性学习小组共6人,计划同时参观科普展,该科普展共有甲,乙,丙三个展厅,6人各自随机地确定参观顺序,在每个展厅参观一小时后去其他展厅,所有展厅参观结束后集合返回,设事件A为:在参观的第一小时时间内,甲,乙,丙三个展厅恰好分别有该小组的2个人;事件B为:在参观的第二个小时时间内,该小组在甲展厅人数恰好为2人,则 ).

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=x2+2xtanθ-1,x∈[-1,],其中θ∈(-).

(1)当θ=-时,求函数f(x)的最大值;

(2)求θ的取值范围,使yf(x)在区间[-1,]上是单调函数.

查看答案和解析>>

同步练习册答案