设a,b是异面直线,则以下四个命题:①存在分别经过直线a和b的两个互相垂直的平面;②存在分别经过直线a和b的两个平行平面;③经过直线a有且只有一个平面垂直于直线b;④经过直线a有且只有一个平面平行于直线b.其中正确的个数有
( )
A.1
B.2
C.3
D.4
【答案】分析:熟练应用点线面位置关系的判定定理和性质定理
解答:解:对于①:可以在两个互相垂直的平面中,分别画一条直线,当这两条直线异面时,可判断①正确
对于②:可在两个平行平面中,分别画一条直线,当这两条直线异面时,可判断②正确
对于③:当这两条直线不是异面垂直时,不存在这样的平面满足题意,可判断③错误
对于④:假设过直线a有两个平面α、β与直线b平行,则面α、β相交于直线a,过直线b做一平面γ与面α、β相交于两条直线m、n,则直线m、n相交于一点,且都与直线b平行,这与“过直线外一点有且只有一条直线与已知直线平行”矛盾,所以假设不成立,所以④正确
故选C
点评:本题考察点线面的位置关系,要求有比较好的想象力,且熟练掌握平面的基本性质和点线面的位置关系的判定定理和性质定理