精英家教网 > 高中数学 > 题目详情
11.已知$|{\overrightarrow a}|=2,|{\overrightarrow b}|=3$,$(2\overrightarrow a+\overrightarrow b)⊥(\overrightarrow a-2\overrightarrow b)$,则向量$\overrightarrow b$在向量$\overrightarrow a$方向上的投影为(  )
A.-$\frac{5}{3}$B.$\frac{5}{4}$C.$-\frac{5}{6}$D.$\frac{5}{6}$

分析 先根据向量的垂直得到$\overrightarrow{a}•\overrightarrow{b}$=-$\frac{10}{3}$,再根据投影的定义即可求出.

解答 解:∵$|{\overrightarrow a}|=2,|{\overrightarrow b}|=3$,$(2\overrightarrow a+\overrightarrow b)⊥(\overrightarrow a-2\overrightarrow b)$,
∴(2$\overrightarrow{a}$+$\overrightarrow{b}$)($\overrightarrow{a}$-2$\overrightarrow{b}$)=2${\overrightarrow{a}}^{2}$-3$\overrightarrow{a}•\overrightarrow{b}$-2${\overrightarrow{b}}^{2}$=0,
∴$\overrightarrow{a}•\overrightarrow{b}$=-$\frac{10}{3}$,
∴向量$\overrightarrow b$在向量$\overrightarrow a$方向上的投影为$\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{a}|}$=-$\frac{5}{3}$,
故选:A.

点评 本题考查了向量的数量积的运算和向量的投影的定义,属于基础题/

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.在△ABC中,a=2,b=3,$cosC=\frac{1}{3}$,则其外接圆的半径为(  )
A.$\frac{9\sqrt{2}}{2}$B.$\frac{9\sqrt{2}}{4}$C.$\frac{9\sqrt{2}}{8}$D.9$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)是偶函数,而且在(0,+∞)上是减函数,判断f(x)在(-∞,0)上是增函数还是减函数,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在△ABC中,角A,B,C的对边分别为a,b,c,已知向量$\overrightarrow m=({cosA,cosB})$,$\overrightarrow n=({b-2c,a})$,且$\overrightarrow m⊥\overrightarrow n$.
(1)求角A的大小;
(2)若a=3,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.写出下列各命题的否定及其否命题.
(1)若x,y都是奇数,则x+y是偶数;
(2)若xy=0,则x=0或y=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.命题“?x∈R,x≤1或x2>4”的否定为“?x∈R,x>1且x2≤4”.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.椭圆C的中心为原点,焦点在y轴上,离心率$e=\frac{{\sqrt{2}}}{2}$,椭圆上的点到焦点的最短距离为$\sqrt{2}-1$,则椭圆的标准方程为$\frac{{x}^{2}}{2}+{y}^{2}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知集合M={x|x2+3x<4},N={-2,-1,0,1,2},则M∩N=(  )
A.{-2,-1,0,1,2}B.{-2,-1,0,1}C.{-2,-1,0}D.{-1,0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线与圆(x-3)2+y2=9相交于A,B两点,若|AB|=2,则该双曲线的离心率为3.

查看答案和解析>>

同步练习册答案