精英家教网 > 高中数学 > 题目详情
已知函数 的图象在处的切线互相平行.
(Ⅰ) 求的值;
(Ⅱ)设,当时,恒成立,求的取值范围.
(Ⅰ)          
(Ⅱ)满足条件的的取值范围是:. 
(Ⅰ)    ………………………3分
∵函数的图象在处的切线互相平行
          …………………………………………………5分

        ………………………………………………………………6分
(Ⅱ)

   …………………………………………7分
    

∴当时,,当时,.
是单调减函数,在是单调增函数.  …………………………9分

∴当时,有,当时,有.
∵当时,恒成立, ∴  …………………………11分
∴满足条件的的值满足下列不等式组
①,或
不等式组①的解集为空集,解不等式组②得
综上所述,满足条件的的取值范围是:. 
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知是定义在 [ – 1,1 ] 上的奇函数,且,若m时有
(1)用定义证明在 [ – 1,1 ] 上是增函数;
(2)若成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.已知正弦波图形如下:

此图可以视为函数y=Asin(ωx+)(A>0,ω>0,||<)图象的一部分,试求出其解析式.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)某厂家根据以往的经验得到有关生产销售规律如下:每生产(百台),其总成本为(万元),其中固定成本2万元,每生产1百台需生产成本1万元(总成本固定成本生产成本);销售收入(万元)满足:(Ⅰ)要使工厂有盈利,求的取值范围;
(Ⅱ)求生产多少台时,盈利最多?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数(其中
(I)求函数f(x)的反函数
(II)设,求函数g(x)最小值及相应的x值;
(III)若不等式对于区间上的每一个x值都成立,求实数m的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,函数的图象与的图象关于点中心对称。
(1)求函数的解析式;
(2)如果,试求出使成立的取值范围;
(3)是否存在区间,使对于区间内的任意实数,只要,且时,都有恒成立?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

甲乙两公司生产同一种新产品,经测算,对于函数,及任意的,当甲公司投入万元作宣传时,乙公司投入的宣传费若小于万元,则乙公司有失败的危险,否则无失败的危险;当乙公司投入万元作宣传时,甲公司投入的宣传费若小于万元,则甲公司有失败的危险,否则无失败的危险. 设甲公司投入宣传费x万元,乙公司投入宣传费y万元,建立如图直角坐标系,试回答以下问题:
(1)请解释
(2)甲、乙两公司在均无失败危险的情况下尽可能少地投入宣传费用,问此时各应投入多少宣传费?
(3)若甲、乙分别在上述策略下,为确保无失败的危险,根据对方所投入的宣传费,按最少投入费用原则,投入自己的宣传费:若甲先投入万元,乙在上述策略下,投入最少费用;而甲根据乙的情况,调整宣传费为;同样,乙再根据甲的情况,调整宣传费为如此得当甲调整宣传费为时,乙调整宣传费为;试问是否存在的值,若存在写出此极限值(不必证明),若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)求的定义域;
(2)在函数的图象上是否存在不同的两点,使过这两点的直线平行于轴;
(3)当满足什么条件时,上恒取正值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

是集合的映射,
且有,那么映射的个数是多少?

查看答案和解析>>

同步练习册答案