【题目】在平面直角坐标点xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρsinθ=6.
(1)A为曲线C1上的动点,点M在线段OA上,且满足|OM||OA|=36,求点M的轨迹C2的直角坐标方程;
(2)点E的极坐标为(4,),点F在曲线C2上,求△OEF面积的最大值
【答案】(1)x2+(y﹣3)2=9(y≠0)(2)
【解析】
(1)直接利用转换关系式,把参数方程极坐标方程和直角坐标方程之间进行转换;
(2)利用三角形的面积公式的应用和三角函数关系式的恒等变换和正弦型函数的性质的应用求出结果.
(1)设点A(ρ1,θ),点M(ρ,θ),由于曲线C1的极坐标方程为ρsinθ=6,A为曲线C1上的动点,故,点M在线段OA上,且满足|OM||OA|=36,
所以,整理得点M的轨迹C2的直角坐标方程为x2+(y﹣3)2=9(y≠0).
(2)设F点为(ρ0,α),(),则ρ0=6sinα,|OF|=ρ0,且(),或(),|OE|=4,
所以123,
由于,故当α时,.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|x﹣2|+|x+1|.
(1)解关于x的不等式f(x)≤5;
(2)若函数f(x)的最小值记为m,设a,b,c均为正实数,且a+4b+9c=m,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】微信运动,是由腾讯开发的一个类似计步数据库的公众账号.用户可以通过关注微信运动公众号查看自己每天行走的步数,同时也可以和其他用户进行运动量的或点赞.微信运动公众号为了解用户的一些情况,在微信运动用户中随机抽取了100名用户,统计了他们某一天的步数,数据整理如下:
(万步) | ||||||
(人) | 5 | 20 | 50 | 15 | 5 | 5 |
(1)根据表中数据,在如图所示的坐标平面中作出其频率分布直方图,并在纵轴上标明各小长方形的高;
(2)若视频率分布为概率分布,在微信运动用户中随机抽取3人,求至少2人步数多于1.2万步的概率;
(3)若视频率分布为概率分布,在微信运动用户中随机抽取2人,其中每日走路不超过0.8万步的有人,超过1.2万步的有人,设,求的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校高三年级有400名学生参加某项体育测试,根据男女学生人数比例,使用分层抽样的方法从中抽取了100名学生,记录他们的分数,将数据分成7组:,整理得到如下频率分布直方图:
(1)若该样本中男生有55人,试估计该学校高三年级女生总人数;
(2)若规定小于60分为“不及格”,从该学校高三年级学生中随机抽取一人,估计该学生不及格的概率;
(3)若规定分数在为“良好”,为“优秀”.用频率估计概率,从该校高三年级随机抽取三人,记该项测试分数为“良好”或“优秀”的人数为X,求X的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:
上年度出险次数 | 0 | 1 | 2 | 3 | 4 | ≥5 |
保费 | 0.85a | a | 1.25a | 1.5a | 1.75a | 2a |
随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:
出险次数 | 0 | 1 | 2 | 3 | 4 | ≥5 |
频数 | 60 | 50 | 30 | 30 | 20 | 10 |
(1)记A为事件:“一续保人本年度的保费不高于基本保费”,求P(A)的估计值;
(2)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”,求P(B)的估计值;
(3)求续保人本年度平均保费的估计值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,是边长为2的正方形,平面,且.
(Ⅰ)求证:平面平面;
(Ⅱ)线段上是否存在一点,使二而角等于45°?若存在,请找出点的位置;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com