精英家教网 > 高中数学 > 题目详情
如图,已知⊙O的直径AB=3,点C为⊙O上异于A、B的一点,VC⊥平面ABC,且VC=2,点M为线段VB的中点.(Ⅰ)求证:BC⊥平面VAC
(Ⅱ)若AC=1,求直线AM与平面VAC所成角的大小.
考点:直线与平面垂直的判定,直线与平面所成的角
专题:空间位置关系与距离,空间向量及应用
分析:(Ⅰ)由线面垂直得VC⊥BC,由直径性质得AC⊥BC,由此能证明BC⊥平面VAC.
(Ⅱ)分别以AC,BC,VC所在直线为x轴,y轴,z轴,建立空间直角坐标系,利用向量法能求出直线AM与平面VAC所成角为θ.
解答: 证明:(Ⅰ)∵VC⊥平面ABC,BC?平面ABC,
∴VC⊥BC,
∵点C为⊙O上一点,且AB为直径,
∴AC⊥BC,
又∵VC,AC?平面VAC,VC∩AC=C,
∴BC⊥平面VAC.
(Ⅱ)解:由(Ⅰ)得BC⊥VC,VC⊥AC,AC⊥BC,分别以AC,BC,VC所在直线为x轴,y轴,z轴,建立空间直角坐标系,
则A(1,0,0),V(0,0,2),B(0,2
2
,0),
VA
=(1,0,-2),
AB
=(-1,2
2
,0),M(0,
2
,1),
AM
=(-1,
2
,1),
平面VAC的法向量
m
=
CB
=(0,2
2
,0),
设直线AM与平面VAC所成角为θ,则
cos(
π
2
)=cos<
AM
m
>=
4
2×2
2
=
2
2

故可求得:θ=
π
4
点评:本题考查直线与平面垂直的证明,考查二面角的余弦值的求法,解题时要认真审题,注意向量法的合理运用,考查了转化思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数y=ax2+bx+c的图象交x轴于点A(x0,0)和点B(2,0),与y轴的正半轴交于点C,其对称轴是直线x=-1,tan∠BAC=2,点A关于y轴的对称点为点D.
(1)确定A、C、D三点的坐标;
(2)求过B、C、D三点的二次函数的解析式;
(3)若过点(0,3)且平行于x轴的直线与(2)小题中所求抛物线交于M、N两点,以MN为一边,二次函数图象上任意一点P(x,y)为顶点作平行四边形,若平行四边形的面积为S,写出S关于P点纵坐标y的函数解析式.
(4)当
1
2
<x<4
时,(3)小题中平行四边形的面积是否有最大值?若有,请求出;若无,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

sin330°+(
2
-1)0+3 log32=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图正方形ABCD的边长为2
2
,四边形BDEF是平行四边形,BD与AC交于点G,O为GC的中点,FO=
3
,且FO⊥平面ABCD.
(Ⅰ)求证:AE∥平面BCF;
(Ⅱ)求证:CF⊥平面AEF;
(Ⅲ)求二面角A-CF-B余弦值的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=cosx(sinx-
3
cosx)+
3
2

(Ⅰ)求函数f(x)的最小正周期及单调递减区间
(Ⅱ)求函数f(x)在区间[0,
π
2
]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b∈{-1,1,2},则直线ax+by-3=0(a2+b2≠0)与圆x2+y2=4有公共点的概率是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若一个正四棱锥的左视图是一个边长为2的正三角形(如图),则该正四棱锥的体积是(  )
A、1
B、
3
C、
4
3
3
D、2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=sin2x+2sinxcosx+3cos2x
(Ⅰ)若x∈R,求函数f(x)的最小正周期
(Ⅱ)在△ABC中,a,b,c分别是内角A、B、C的 对边,若bsinA=
3
accosB,求f(B)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的离心率为2,焦点到渐近线的距离为
3
,则此双曲线的焦距等于
 

查看答案和解析>>

同步练习册答案