精英家教网 > 高中数学 > 题目详情

【题目】为了得到函数的图象,只需把函数的图象上所有的点(

A.向左平移个单位长度,再把所得各点的横坐标伸长到原来的倍(纵坐标不变)

B.向右平移个单位长度,再把所得各点的横坐标缩短到原来的倍(纵坐标不变)

C.向左平移个单位长度,再把所得各点的横坐标伸长到原来的倍(纵坐标不变)

D.向右平移个单位长度,再把所得各点的横坐标伸长到原来的倍(纵坐标不变)

【答案】C

【解析】

按照平移变换和周期变换的结论,分别求出四个选项中得到的函数解析式可得答案.

对于,把函数的图象上所有的点向左平移个单位长度,再把所得各点的横坐标伸长到原来的倍(纵坐标不变)得到函数的图象,故不正确;

对于,把函数的图象上所有的点向右平移个单位长度,再把所得各点的横坐标伸长到原来的倍(纵坐标不变)得到函数的图象,故不正确;

对于,把函数的图象上所有的点向左平移个单位长度,再把所得各点的横坐标伸长到原来的倍(纵坐标不变)得到函数的图象,故正确;

对于,把函数的图象上所有的点向右平移个单位长度,再把所得各点的横坐标伸长到原来的倍(纵坐标不变)得到函数的图象,故不正确.

故选:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】数学发展史知识测验后,甲、乙、丙三人对成绩进行预测:

甲说:我的成绩比乙高;

乙说:丙的成绩比我和甲的都高;

丙说:我的成绩比乙高.

成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人中预测正确的是________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,过点的直线与椭圆交于两点,的周长为8,直线被椭圆截得的线段长为.

(1)求椭圆的方程;

(2)设是椭圆上两动点,线段的中点为的斜率分别为为坐标原点),且,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)求函数上的最大值和最小值;

2)求证:当时,函数的图象在的下方.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的左、右焦点分别为,椭圆的长轴长与焦距之比为,过的直线交于两点.

(1)当的斜率为时,求的面积;

(2)当线段的垂直平分线在轴上的截距最小时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出以下五个结论:

①函数是偶函数;

②当时,函数的值域是

③等差数列的前项和为,若,则

④已知定义域为的函数,当且仅当时,成立.

函数的最小值4

则上述结论中正确的是______(写出所有正确结论的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2)(本小题满分7分)选修4-4:坐标系与参数方程

在直接坐标系中,直线l的方程为x-y+4=0,曲线C的参数方程为.

I)已知在极坐标(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为(4),判断点P与直线l的位置关系;

II)设点Q是曲线C上的一个动点,求它到直线l的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱ABCA1B1C1中,EF分别为A1C1BC的中点,MN分别为A1BA1C的中点.求证:

1MN∥平面ABC

2EF∥平面AA1B1B.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为抑制房价过快上涨和过度炒作,各地政府响应中央号召,因地制宜出台了系列房价调控政策.某市为拟定出台房产限购的年龄政策”.为了解人们对房产限购年龄政策的态度,对年龄在岁的人群中随机调查100人,调查数据的频率分布直方图和支持房产限购的人数与年龄的统计结果如下:

年龄

支持的人数

15

5

15

28

17

1)由以上统计数据填列联表,并判断能否在犯错误的概率不超过的前提下认为以44岁为分界点的不同人群对房产限购年龄政策的支持度有差异;

44岁以下

44岁以上

总计

支持

不支持

总计

2)若以44岁为分界点,从不支持房产限购的人中按分层抽样的方法抽取8人参加政策听证会.现从这8人中随机抽2人.

①抽到1人是44岁以下时,求抽到的另一人是44岁以上的概率.

②记抽到44岁以上的人数为X,求随机变量X的分布列及数学期望.

参考数据:

,其中

查看答案和解析>>

同步练习册答案