精英家教网 > 高中数学 > 题目详情
9.在菱形ABCD中,若AC=2,则$\overrightarrow{CA}$•$\overrightarrow{AB}$等于(  )
A.2B.-2
C.|$\overrightarrow{AB}$|cosAD.与菱形的边长有关

分析 设对角线AC与BD交与点O,易得AC、BD互相垂直且平分,再根据$\overrightarrow{CA}$•$\overrightarrow{AB}$=-|$\overrightarrow{AC}$|•|$\overrightarrow{AB}$|•cos∠BAC=-|$\overrightarrow{AC}$|×|$\overrightarrow{AO}$|,从而得出结论.

解答 解:如图:菱形ABCD中,若AC=2,对角线AC与BD交与点O,易得AC、BD互相垂直且平分,
则$\overrightarrow{CA}$•$\overrightarrow{AB}$=-$\overrightarrow{AC}$•$\overrightarrow{AB}$=-|$\overrightarrow{AC}$|•|$\overrightarrow{AB}$|•cos∠BAC=-2×|$\overrightarrow{AO}$|=-2×1=-2,
故选:B.

点评 本题考查向量数量积的概念与计算,注意结合菱形的对角线的性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.不等式$\frac{1}{x}$<a的解集是{x|a<x<0},则a=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.将函数f(x)=2sin(3x+$\frac{π}{4}$)的图象向左平移$\frac{π}{3}$个单位后得到函数y=g(x)的图象,则函数y=f(x)与函数y=g(x)的图象关于(  )
A.x轴对称B.原点对称C.y轴对称D.直线x=$\frac{π}{2}$对称

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.如图,在△ABC中,AB=AC=1,cos∠BAC=$\frac{1}{3}$,D是BC上一点,且DC=2BD,E是AD的中点,则BE的长为$\frac{\sqrt{129}}{18}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.一种商品共20件,采用网上集体议价的方式销售,规则是这样的:商品的单价随着定购量的增加而不断下降,直至底价,每件商品的价格x(元)与定购量n(件)的关系是x=100+$\frac{50}{n}$,例如,在规定时间内定购一件(n=1),单价就是150元,而20件商品都被定购的话(n=20),单价就只有102.5元了.
(1)请写出该商品的销售总金额y(元)与销售件数n之间的函数关系;
(2)求购买12件时的销售总金额.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某中学将100名高一新生分成水平相同的甲、乙两个“平行班”,每班50人,陈老师采用A,B两种不同的教学方式分别在甲、乙两个班进行教改实验,为了了解教学效果,期末考试后,陈老师对甲、乙两个班级的学生成绩进行统计分析,画出频率分布直方图(如图).记成绩不低于90分者为“成绩优秀”.

(1)从乙班随机抽取2名学生的成绩,记“成绩优秀”的个数为ξ,求ξ的分布列和数学期望;
(2)根据频率分布直方图填写下面2×2列联表,并判断能否在犯错误的概率不超过0.05的前提下认为:“成绩优秀”与教学方式有关.
甲班(A方式)乙班(B方式)总计
成绩优秀
成绩不优秀
总计
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.
P(K2≥k)0.250.150.100.050.025
k1.3232.0722.7063.8415.024

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.正数a、b、c满足abc=a+b+c+2,求证:a+b+c≥4($\frac{1}{a}$+$\frac{1}{b}$+$\frac{1}{c}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知数列{an}的前n项和Sn=k-kan(a,k都是不为0的常数)是数列{an}为等比数列的(  )
A.充分非必要条件B.必要非充分条件
C.充要条件D.既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)为R上的奇函数,当x>0时,f(x)=x2+kx+1.
(1)求f(x)的解析式;
(2)若函数f(x)为R上的单调增函数,写出k的取值范围(不需证明).

查看答案和解析>>

同步练习册答案