精英家教网 > 高中数学 > 题目详情
设f(n)>0(n∈N*),f(2)=4,并且对于任意n2,n2∈N*,有f(n1+n2)=f(n1)•f(n2)成立,猜想f(n)的表达式为(  )
A、f(n)=n2
B、f(n)=2n
C、f(n)=2n+1
D、f(n)=2n
考点:归纳推理
专题:计算题,函数的性质及应用
分析:由f(n1+n2)=f(n1)•f(n2)知,f(n)可以为指数型函数,从而得到答案.
解答: 解:由f(n1+n2)=f(n1)•f(n2),
结合指数运算律:as×at=as+t知,
f(n)可以为指数型函数,
故排除A,B;
而再由f(2)=4知,
f(n)=2n
故选D.
点评:本题考查了指数函数的应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

f(x)是定义在R上的偶函数,且在(0,+∞)上是减函数,若x2>x1,x1+x2>0,则下列说法正确的是(  )
A、f(x1)>f(x2
B、f(x1)=f(x2
C、f(x1)<f(x2
D、f(x1)和f(x2)的大小关系不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:

若(cosa)2+2msina-2m-2<0对a∈R恒成立,则实数m的取值范围
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
OA
=
a
OB
=
b
,且
a
b
不共线,C为线段AB上距点A较近的一个三等分点,则以
a
b
为基底,向量
OC
可表示为(  )
A、
1
3
(2
a
+
b
B、
1
3
a
+2
b
C、
1
3
(4
a
-
b
D、
1
3
(5
a
-2
b

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=loga(1+x)+loga(3-x)(a>0,a≠1)且f(1)=2.
(1)求a的值及f(x)的定义域;
(2)求f(x)在区间[0,
3
2
]上的最大值和最小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,BD、CE是△ABC的中线,P、Q分别是BD、CE的中点,则PQ:BC=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某四面体的三视图如图所示,三个三角形均为直角三角形,则该四面体的表面积是(  )
A、8
B、22+2
34
C、18+6
2
D、24+6
2

查看答案和解析>>

科目:高中数学 来源: 题型:

9位同学排成三排,每排3人,其中甲不站在前排,乙不站在后排,这样的排法种数共
 
种.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
(sin2x-cos2x)-2sinxcosx
(1)求f(x)的最小正周期;
(2)设x∈[-
π
2
π
2
],求f(x)的值域和单调递增区间.

查看答案和解析>>

同步练习册答案