精英家教网 > 高中数学 > 题目详情

【题目】某部门在上班高峰时段对甲、乙两座地铁站各随机抽取了50名乘客,统计其乘车等待时间(指乘客从进站口到乘上车的时间,单位:分钟)将统计数据按,…,分组,制成频率分布直方图如图所示:

1)求a的值;

2)记A表示事件“在上班高峰时段某乘客在甲站乘车等待时间少于20分钟”试估计A的概率;

3)假设同组中的每个数据用该组区间左端点值来估计,记在上班高峰时段甲、乙两站各抽取的50名乘客乘车的平均等待时间分别为,求的值,并直接写出的大小关系.

【答案】120.53

【解析】

1)根据小长方形的面积和为列方程,解方程求得的值.

2)根据频率分布直方图,计算出乘客在甲站等待时间少于20分钟的频率,由此估计A的概率.

3)利用频率分布直方图计算出平均数.根据图象判断出.

1)因为

所以.

2)由题意知,该乘客在甲站等待时间少于20分钟的频率为,故的估计值为0.5.

3.

由直方图知.(因为乙图中较高的小长方形位于等待时间较长的范围)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某班50名学生期中考试数学成绩的频率分布直方图如图所示,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].从样本成绩不低于80分的学生中随机选取2人,记这2人成绩在90分以上(含90分)的人数为ξ,则ξ的数学期望为( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面,四边形是菱形,点在线段.

1)证明:平面平面

2)若,二面角的余弦值为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《周髀算经》是我国古老的天文学和数学著作,其书中记载:一年有二十四个节气,每个节气晷长损益相同(晷是按照日影测定时刻的仪器,晷长即为所测影子的长度),夏至、小暑、大暑、立秋、处暑、白露、秋分、寒露、霜降是连续的九个节气,其晷长依次成等差数列,经记录测算,这九个节气的所有晷长之和为49.5尺,夏至、大暑、处暑三个节气晷长之和为10.5尺,则立秋的晷长为(

A.1.5B.2.5C.3.5D.4.5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中e为自然对数的底数.

1)若函数的极小值为,求的值;

2)若,证明:当时,成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)函数内有两个不同零点,求的取值范围;

2)在第(1)问的条件下判断当时,曲线是否位于轴下方,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过抛物线y2=4x的焦点的直线l与抛物线交于AB两点,设点M30.若△MAB的面积为,则|AB|=( )

A.2B.4C.D.8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线C1a0b0)的焦点分别为F1(﹣50),F250),PC上一点,PF1PF2tanPF1F2,则C的方程为(

A.x21B.y21

C.1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,国家为了鼓励高校毕业生自主创业,出台了许多优惠政策,以创业带动就业.某高校毕业生小李自主创业从事海鲜的批发销售,他每天以每箱300元的价格购入基围虾,然后以每箱500元的价格出售,如果当天购入的基围虾卖不完,剩余的就作垃圾处理.为了对自己的经营状况有更清晰的把握,他记录了150天基围虾的日销售量(单位:箱),制成如图所示的频数分布条形图.

1)若小李一天购进12箱基围虾.

①求当天的利润(单位:元)关于当天的销售量(单位:箱,)的函数解析式;

②以这150天记录的日销售量的频率作为概率,求当天的利润不低于1900元的概率;

2)以上述样本数据作为决策的依据,他计划今后每天购进基围虾的箱数相同,并在进货量为11箱,12箱中选择其一,试帮他确定进货的方案,以使其所获的日平均利润最大.

查看答案和解析>>

同步练习册答案