精英家教网 > 高中数学 > 题目详情
20.已知二次函数f(x)=ax2+bx+c,当-1≤x≤1时,有-1≤f(x)≤1,求证:-2≤x≤2时,有-7≤f(x)≤7.

分析 函数的图象开口可能向上或者向下,不论本题是那种情况,都有区间两端点的函数值小于等于1,|f(0)|≤1,在这些条件下,用不等式的基本性质结合放缩法证明.

解答 证明:由已知条件知f(x)=ax2+bx+c(a≠0),且|f(0)|≤1,|f(1)|≤1,|f(-1)|≤1,定义域为[-1,1]
∴|c|≤1,|a+b+c|≤1,|a-b+c|≤1;
∵|f(2)|=|4a+2b+c|=|3(a+b+c)+(a-b+c)-3c|≤|=|3(a+b+c)|+|(a-b+c)|+|-3c|≤3+1+3=7
∴|f(2)|≤7,
∴-2≤x≤2时,有-7≤f(x)≤7.

点评 本考点考查二函数的最值及其几何意义,不等式的性质,以及不等式证明时常用的技巧放缩法的技巧.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.设数列{an}满足an=2an-1+n(n≥2且n∈N*),{an}的前n项和为Sn,数列{bn}满足bn=an+n+2.
(1)若a1=1,求Sn
(2)试判断数列{bn}是否为等比数列?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}的通项公式为an=qn,且a4-a2=72,求实数q的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.求数列1,3a,5a2,…,(2n-1)an-1(a≠0)的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数f(x)=x2+4ax+2在(-∞,6)内是减函数,则实数a的取值范围是(  )
A.[3,+∞)B.(-∞,3]C.[-3,+∞)D.(-∞,-3]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设m,n是两条不同的直线,α、β、γ是三个不同的平面,给出下列命题:
①若m⊥α,n∥α,则m⊥n;
②若α∥β,β∥γ,m⊥α,则m⊥γ;
③若m∥α,m∥β,则α∥β;
④若α⊥γ,β⊥γ,则α∥β.
其中正确命题的序号是(  )
A.①②B.②③C.③④D.①④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若极坐标方程ρ=ρ(θ)满足ρ(θ)=ρ(π-θ),则方程ρ=ρ(θ)表示的图形关于(  )
A.极轴对称B.极点对称C.射线θ=$\frac{π}{2}$对称D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.若函数f(x)=x2-bx+5,且x∈(-∞,2)时是减函数,x∈(2,+∞)时是增函数,求f(3)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知4个数,前3个数成等差数列,后3个数成等比数列,中间两数之积为16,首末两数之积为-128,求这4个数.

查看答案和解析>>

同步练习册答案