精英家教网 > 高中数学 > 题目详情
如图,四棱锥P-ABCD的底面ABCD是正方形,AC∩BD=O,PA⊥底面ABCD,OE⊥PC于E.
(1)求证:PC⊥平面BDE;
(2)设PA=AB=2,求二面角B-PC-D的大小.
分析:(1)利用正方形的性质、线面垂直的判定定理和性质定理即可证明;
(2)利用(1)的结论可得∠BED即为二面角B-PC-D的平面角,求出即可.
解答:(1)证明:由正方形ABCD可得:对角线BD⊥AC.
∵PA⊥底面ABCD,∴PA⊥BD,
又PA∩AC=A,∴BD⊥平面PAC,
∴BD⊥PC.
∵OE⊥PC,BD∩OE=O,
∴PC⊥平面BDE.
(2)由(1)可知:PC⊥平面BDE.
∴PC⊥BE,PC⊥DE,
∴∠BED即为二面角B-PC-D的平面角.
∵Rt△PAC∽Rt△OEC,∴
OE
OC
=
PA
PC

OE=
OC×PA
PA2+AC2
=
2
×2
22+(2
2
)2
=
6
3

由(1)可知:BD⊥平面PAC,∴BD⊥OE.
在Rt△BOE中,tan∠BEO=
OB
OE
=
2
6
3
=
3
,∴∠BEO=60°.
同理可得:∠DEO=60°.
∴∠BED=120°.
∴二面角B-PC-D的平面角∠BED=120°.即二面角B-PC-D为120°.
点评:熟练掌握正方形的性质、线面垂直的判定定理和性质定理、二面角的定义及求法是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,
E是PC的中点.求证:
(Ⅰ)CD⊥AE;
(Ⅱ)PD⊥平面ABE.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,底面ABCD是直角梯形,AB∥CD,∠DAB=60°,AB=AD=2CD=2,侧面PAD⊥底面ABCD,且△PAD为等腰直角三角形,∠APD=90°,M为AP的中点.
(1)求证:AD⊥PB;
(2)求三棱锥P-MBD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD的底面ABCD是矩形,AB=2,BC=
2
,且侧面PAB是正三角形,平面PAB⊥平面ABCD.
(1)求证:PD⊥AC;
(2)在棱PA上是否存在一点E,使得二面角E-BD-A的大小为45°,若存在,试求
AE
AP
的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥底面ABCD,且PA=AB=1,AD=
3
,点F是PB中点.
(Ⅰ)若E为BC中点,证明:EF∥平面PAC;
(Ⅱ)若E是BC边上任一点,证明:PE⊥AF;
(Ⅲ)若BE=
3
3
,求直线PA与平面PDE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD,PA⊥平面ABCD,ABCD是直角梯形,DA⊥AB,CB⊥AB,PA=2AD=BC=2,AB=2
2
,设PC与AD的夹角为θ.
(1)求点A到平面PBD的距离;
(2)求θ的大小;当平面ABCD内有一个动点Q始终满足PQ与AD的夹角为θ,求动点Q的轨迹方程.

查看答案和解析>>

同步练习册答案