(本小题满分14分)如图椭圆的上顶点为A,左顶点为B, F为右焦点, 过F作平行于AB的直线交椭圆于C、D两点. 作平行四边形OCED, E恰在椭圆上。
(Ⅰ)求椭圆的离心率;
(Ⅱ)若平行四边形OCED的面积为, 求椭圆的方程.
科目:高中数学 来源: 题型:解答题
(本题12分)直线l:y=kx+1与双曲线C:的右支交于不同的两点A,B
(Ⅰ)求实数k的取值范围;
(Ⅱ)是否存在实数k,使得以线段AB为直径的圆经过双曲线C的右焦点F?若存在,求出k的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
如果两个椭圆的离心率相等,那么就称这两个椭圆相似.已知椭圆与椭圆相似,且椭圆的一个短轴端点是抛物线的焦点.
(Ⅰ)试求椭圆的标准方程;
(Ⅱ)设椭圆的中心在原点,对称轴在坐标轴上,直线与椭圆交于两点,且与椭圆交于两点.若线段与线段的中点重合,试判断椭圆与椭圆是否为相似椭圆?并证明你的判断.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)已知椭圆的焦点坐标为,,且短轴一顶点B满足,
(Ⅰ) 求椭圆的方程;
(Ⅱ)过的直线l与椭圆交于不同的两点M、N,则△MN的内切圆的面积是否存在最大值?若存在求出这个最大值及此时的直线方程;若不存在,请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分13分) 如图,是离心率为的椭圆,
:()的左、右焦点,直线:将线段分成两段,其长度之比为1 : 3.设是上的两个动点,线段的中点在直线上,线段的中垂线与交于两点.
(Ⅰ) 求椭圆C的方程;
(Ⅱ) 是否存在点,使以为直径的圆经过点,若存在,求出点坐标,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的离心率为,椭圆短轴的一个端点与两个焦
(Ⅰ)求椭圆的方程;
(Ⅱ)已知动直线与椭圆相交于、两点. ①若线段中点的
横坐标为,求斜率的值;②若点,求证:为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(12分)已知抛物线:过点.(1)求抛物线的方程,并求其准线方程;
(2)是否存在平行于(为坐标原点)的直线,使得直线与抛物线有公共点,且直线与的
距离等于?若存在,求出直线的方程;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com