精英家教网 > 高中数学 > 题目详情
9.设α为锐角,若$cos(α+\frac{π}{6})=\frac{3}{5}$,则$sin(α-\frac{π}{6})$=$\frac{4-3\sqrt{3}}{10}$.

分析 根据同角的三角函数的关系和两角差的正弦公式即可求出.

解答 解:∵0<α<$\frac{π}{2}$,
∴$\frac{π}{6}$$<α+\frac{π}{6}$<$\frac{2π}{3}$,
∵$cos(α+\frac{π}{6})=\frac{3}{5}$,
∴sin($α+\frac{π}{6}$)=$\frac{4}{5}$,
∵$sin(α-\frac{π}{6})$=sin(α+$\frac{π}{6}$-$\frac{π}{3}$)=sin(α+$\frac{π}{6}$)cos$\frac{π}{3}$-cos(α+$\frac{π}{6}$)sin$\frac{π}{3}$=$\frac{4}{5}$×$\frac{1}{2}$-$\frac{3}{5}$×$\frac{\sqrt{3}}{2}$=$\frac{4-3\sqrt{3}}{10}$,
故答案为:$\frac{4-3\sqrt{3}}{10}$

点评 本题考查了同角的三角函数的关系和两角差的正弦公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源:2015-2016学年江西省南昌市高一下学期期末考试数学试卷(解析版) 题型:解答题

甲、乙两人玩一种游戏:在装有质地、大小完全相同,编号分别为1,2,3,4,5,6的6个球的口袋中,甲先摸出一个球,记下编号,放回后乙再摸一个球,记下编号,如果两个编号的和为偶数则甲赢,否则乙赢.

(1)求甲赢且编号和为8的事件发生的概率;

(2)这种游戏规则公平吗?试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.-1060o的终边落在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知关于x的一元二次方程x2-(tanα+cotα)x+1=0的一个实数根是$2-\sqrt{3}$,求sin2α和cos4α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.某地区根据2008年至2014年每年的生活垃圾无害化处理量y(单位:万吨)的数据,用线性回归模型拟合y关于t的回归方程为:$\widehat{y}$=0.92+0.1t(t表示年份代码,自2008年起,t的取值分别为1,2,3…),则下列表述不正确的是(  )
A.自2008年起,每年的生活垃圾无害化处理量和年份代码正相关
B.自2008年起,每年的生活垃圾无害化处理量大约增加0.10万吨
C.由此模型可知2016年该地区生活垃圾无害化处理量是1.82万吨
D.由此模型预测出2017年该地区生活垃圾无害化处理量约为1.92万吨

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列说法错误的个数是(  )
①在线性回归模型y=bx+a+e中,预报变量y除了受解释变量x的影响外,可能还受到其它因素的影响,这些因素会导致随机误差e的产生
②在线性回归模型y=bx+a+e中,随机误差e是由于计算不准确造成的,可以通过精确计算避免随机误差e的产生
③在吸烟与患肺病这两个分类变量的计算中,从独立性检验可知有99%的把握认为吸烟与患肺病有关系时,我们说某人吸烟,那么他有99%的可能患有肺病
④在吸烟与患肺病这两个分类变量的计算中,若K2从统计量中求出有99%的把握认为吸烟与患肺病有关系,是指有1%的可能性使得判断出现错误
⑤在吸烟与患肺病这两个分类变量的计算中,若K2的观测值k>6.635,我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病.
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图,在平面直角坐标系xOy中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P的位置在(0,0),圆在x轴上沿正向滚动.当圆滚动到圆心位于(1,1)时,$\overrightarrow{OP}$的坐标为(  )
A.(1-sin1,1-cos1)B.(1+sin1,1-cos1)C.(1-sin1,1+cos1)D.(1+sin1,1+cos1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知数列{an}的前项和为an+2=an+1-an,且a1=2,a2=3,Sn为数列{an}的前n项和,则S2017的值为(  )
A.0B.2C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.若函数f(x)定义域为R,满足对任意x1,x2∈R,f(x1+x2)≤f(x1)+f(x2)有,则称f(x)为“V形函数”;若函数g(x)定义域为R,g(x)恒大于0,且对任意x1,x2∈R,有lg[g(x1+x2)]≤lg[g(x1)]+lg[g(x2)],则称g(x)为“对数V形函数”:
(1)当f(x)=x2时,判断函数f(x)是否为V形函数,并说明理由;
(2)当g(x)=x2+2时,证明:g(x)是对数V形函数;
(3)若f(x)是V形函数,且满足对任意x∈R,有f(x)≥2,问f(x)是否为对数V形函数?如果是,请加以证明;如果不是,请说明理由.

查看答案和解析>>

同步练习册答案