精英家教网 > 高中数学 > 题目详情

【题目】已知双曲线 =1(a>0,b>0)的左、右焦点分别为F1、F2 , 过右焦点F2且与x轴垂直的直线与双曲线两条渐近线分别交于A,B两点,若△ABF1为等腰直角三角形,且|AB|=4 ,P(x,y)在双曲线上,M( ),则|PM|+|PF2|的最小值为(
A. ﹣1
B.2
C.2 ﹣2
D.3

【答案】D
【解析】解:双曲线的左、右焦点分别为F1(﹣c,0),F2(c,0),

渐近线方程为y=± x,

令x=c,解得y=±

可得|AB|=

若△ABF1为等腰直角三角形,且|AB|=4

即有 =4 ,2c=2 ,c2=a2+b2

解得a=1,b=2,c=

即有双曲线的方程为x2 =1,

由题意可知若P在左支上,由双曲线的定义可得|PF2|=2a+|PF1|,

|PM|+|PF2|=|PM|+|PF1|+2a≥|MF1|+2= +2=7,

当且仅当M,P,F1共线时,取得最小值7;

若P在右支上,由双曲线的定义可得|PF2|=|PF1|﹣2a,

|PM|+|PF2|=|PM|+|PF1|﹣2a≥|MF1|﹣2= ﹣2=3,

当且仅当M,P,F1共线时,取得最小值3.

综上可得,所求最小值为3.

故选:D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某电视台举行电视奥运知识大奖赛,比赛分初赛和决赛两部分.为了增加节目的趣味性,初赛采用选手选一题答一题的方式进行,每位选手最多有5次选题答题的机会,选手累计答对3题或答错3题即终止其初赛的比赛,答对3题者直接进入决赛,答错3题者则被淘汰.已知选手甲答题的正确率为 . (Ⅰ)求选手甲可进入决赛的概率;
(Ⅱ)设选手甲在初赛中答题的个数为ξ,试写出ξ的分布列,并求ξ的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)= +lg(x﹣1)的定义域是(
A.(1,+∞)
B.(﹣∞,2)
C.(2,+∞)
D.(1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求证:不论m取什么实数,直线(2m-1)x+(m+3)y-(m-11)=0都经过一个定点,并求出这个定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在平行四边形ABCD中,A1,2,B2,1,中心E3,3

1判断平行四边形ABCD是否为正方形;

2点Px,y在平行四边形ABCD的边界及内部运动,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C:y2=2px(p>0),直线l与抛物线C相交于A,B两点,P为抛物线上一点,当直线l过抛物线焦点时,|AB|的最小值为2.
(Ⅰ)求抛物线C的方程;
(Ⅱ)若AB的中点为(3,1),且直线PA,PB的倾斜角互补,求△PAB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}的前n项和为Sn . 若Sn=2an﹣n,则 + + + =

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据.

x

3

4

5

6

y

2.5

3

4

4.5

1)请画出上表数据的散点图.

2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程.

3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤.

(参考数值:3×2.54×35×46×4.566.5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正方体ABCD﹣A1B1C1D1中,E、F分别是BB1 , CD的中点,求证:平面ADE⊥平面A1FD1

查看答案和解析>>

同步练习册答案