精英家教网 > 高中数学 > 题目详情
如图所示,在直三棱柱ABC-A1B1C1中,∠ABC=90°,BC=CC1,M、N分别为BB1、A1C1的中点.
(Ⅰ)求证:CB1⊥平面ABC1
(Ⅱ)求证:MN∥平面ABC1
分析:(I)根据直三棱柱的性质,利用面面垂直性质定理证出AB⊥平面BB1C1,得出AB⊥CB1.正方形BCC1B1中,对角线CB1⊥BC1,由线面垂直的判定定理可证出CB1⊥平面ABC1
(II)取AC1的中点F,连BF、NF,利用三角形中位线定理和平行四边形的性质,证出EF∥BM且EF=BM,从而得到BMNF是平行四边形,可得MN∥BF,结合线面平行判定定理即可证出MN∥面ABC1
解答:解:(Ⅰ)在直三棱柱ABC-A1B1C1中,
侧面BB1C1C⊥底面ABC,且侧面BB1C1C∩底面ABC=BC,
∵∠ABC=90°,即AB⊥BC,
∴AB⊥平面BB1C1            …(2分)
∵CB1?平面BB1C1C,∴AB⊥CB1.…(4分)
∵BC=CC1,CC1⊥BC,∴BCC1B1是正方形,
∴CB1⊥BC1
∵AB∩BC1=B,∴CB1⊥平面ABC1
(Ⅱ)取AC1的中点F,连BF、NF.…(7分)
在△AA1C1中,N、F是中点,
∴NF
.
1
2
AA1
又∵正方形BCC1B1中BM
.
1
2
AA1
∴EF∥BM,且EF=BM…(8分)
故四边形BMNF是平行四边形,可得MN∥BF,…(10分)
∵BF?面ABC1,MN?平面ABC1
∴MN∥面ABC1…(12分)
点评:本题给出底面为直角三角形的直三棱柱,在已知侧棱与底面直角边长相等的情况下证明线面垂直.着重考查了空间直线与平面平行、垂直的判定与性质等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图所示,在直三棱柱ABC-A1B1C1中,AC⊥BC,AA1=AC=BC=2,D、E、F分别是AB、AA1、CC1的中点,P是CD上的点.
(1)求直线PE与平面ABC所成角的正切值的最大值;
(2)求证:直线PE∥平面A1BF;
(3)求直线PE与平面A1BF的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在直三棱柱ABC-A′B′C′中,∠BAC=90°,AB=BB′=1,直线B′C与平面ABC成30°角.
(1)求证:A′B⊥面AB′C;
(2)求二面角B-B′C-A的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在直三棱柱ABC-A1B1C1中,底面是∠ABC为直角的等腰直角三角形,AC=2a,BB1=3a,D是A1C1的中点,点F在线段AA1上,当AF=
a或2a
a或2a
时,CF⊥平面B1DF.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在直三棱柱ABC-A1B1C1中,AB=BB1,AC1⊥平面A1BD,D为AC的中点.
(Ⅰ)求证:B1C1⊥平面ABB1A1
(Ⅱ)设E是CC1的中点,试求出A1E与平面A1BD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在直三棱柱ABC-A1B1C1中,AB=BB1=BC,AC1⊥平面A1BD,D为AC的中点.
(1)求证:B1C∥平面A1BD;
(2)求证:B1C1⊥平面ABB1A1
(3)在CC1上是否存在一点E,使得∠BA1E=45°,若存在,试确定E的位置,并判断平面A1BD与平面BDE是否垂直?若不存在,请说明理由.

查看答案和解析>>

同步练习册答案