(Ⅰ)求椭圆的方程;
(Ⅱ)当过点的动直线与椭圆相交于两不同点时,在线段上取点,满足,证明:点总在某定直线上
科目:高中数学 来源:天津市天津一中2012届高三4月月考数学文科试题 题型:044
设椭圆,直线l过椭圆左焦点F1且不与x轴重合,l与椭圆交于P、Q,两点,当l与x轴垂直时,,若点且
|KF1|=2
(1)求椭圆T的方程;
(2)直线l绕着F1旋转,与圆O:x2+y2=5交于A,B两点,若|AB|∈[4,],求△F2PQ的面积S的取值范围(F2为椭圆的右焦点).
查看答案和解析>>
科目:高中数学 来源: 题型:
()(本小题满分13分)
设椭圆过点,且着焦点为
(Ⅰ)求椭圆的方程;
(Ⅱ)当过点的动直线与椭圆相交与两不同点时,在线段上取点,满足,证明:点总在某定直线上
查看答案和解析>>
科目:高中数学 来源:2011-2012学年天津市高三4月月考文科数学试卷(解析版) 题型:解答题
设椭圆,直线过椭圆左焦点且不与轴重合, 与椭圆交于,两点,当与轴垂直时,,若点且
(1)求椭圆的方程;
(2)直线绕着旋转,与圆交于两点,若,求的面积 的取值范围(为椭圆的右焦点)。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com