精英家教网 > 高中数学 > 题目详情
5.函数y=sin(x-$\frac{π}{4}$)cos(x+$\frac{π}{4}$)+$\frac{1}{2}$是(  )
A.最小正周期为π的奇函数B.最小正周期为π的偶函数
C.最小正周期为$\frac{π}{2}$的奇函数D.最小正周期为$\frac{π}{2}$的偶函数

分析 先化简函数,将函数化为y=Asin(ωx+φ)或Acos(ωx+φ)的形 式,结合三角函数的图象和性质判断即可确定函数的周期与奇偶性.

解答 解:令f(x)=sin(x-$\frac{π}{4}$)cos(x+$\frac{π}{4}$)+$\frac{1}{2}$,
化简得:f(x)=-cos2( x+$\frac{π}{4}$)+$\frac{1}{2}$,
=-$\frac{1}{2}$cos(2x+$\frac{π}{2}$)=$\frac{1}{2}$sin2x
最小正周期T=π.
f(-x)=$\frac{1}{2}$sin(-2x)=-$\frac{1}{2}$sin2x=-f(x)
∴函数f(x)=$\frac{1}{2}$sin2x是奇函数.
故选:A.

点评 本题考查了三角函数的图象及性质和化简能力.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.设f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x+2)=-f(x).当x∈[0,2]时,f(x)=2x-x2
(1)求证:f(x)是周期函数;
(2)当x∈[2,4]时,求f(x)的解析式;
(3)计算f(0)+f(1)+f(2)+…+f(2017).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若X~N(-1,62),且P(-3≤X≤-1)=0.4,则P(X≥1)等于(  )
A.0.1B.0.2C.0.3D.0.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设函数f(x)=lnx-x+1.
(Ⅰ)分析f(x)的单调性;
(Ⅱ)证明:当x∈(1,+∞)时,1<$\frac{x-1}{lnx}$<x.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.$\frac{cos10°+\sqrt{3}sin10°}{\sqrt{1-si{n}^{2}50°}}$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.命题“$?{x_0}∈R,x_0^3-x_0^2+1>0$”的否定是(  )
A.?x∈R,x3-x2+1≤0B.$?{x_0}∈R,x_0^3-x_0^2+1<0$
C.$?{x_0}∈R,x_0^3-x_0^2+1≤0$D.$?x∈R,x_0^3-x_0^2+1>0$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如果△A1B1C1 的三个内角的余弦值分别等于△A2B2C2 的三个内角的正弦值,则(  )
A.△A1B1C1 和△A2B2C2 都是锐角三角形
B.△A1B1C1 和△A2B2C2 都是钝角三角形
C.△A1B1C1 是钝角三角形,△A2B2C2 是锐角三角形
D.△A1B1C1 是锐角三角形,△A2B2C2 是钝角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如果$\frac{sinα-2cosα}{2sinα+5cosα}=-5$,则tanα的值为(  )
A.-2B.2C.$\frac{23}{16}$D.$-\frac{23}{11}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=xln x-a(x-1),其中a∈R,求函数f(x)在区间[1,e]上的最小值.

查看答案和解析>>

同步练习册答案