【题目】已知函数,.
(1)若在处取得极值,求的值;
(2)设,试讨论函数的单调性;
(3)当时,若存在正实数满足,求证:.
【答案】(1).
(2)见解析.
(3)证明见解析.
【解析】
(1)先求导,再令即得a的值,再验证.(2)先求导得,再对a分类讨论得函数的单调性.(3)先化简已知得到,再令,,求得
的最小值为1,解不等式即得.
(1)解:因为,所以,
因为在处取得极值,
所以,解得.
验证:当时,,
易得在处取得极大值.
(2)解:因为,
所以.
①若,则当时,,所以函数在上单调递增;
当时,,函数在上单调递减.
②若,,
当时,易得函数在和上单调递增,
在上单调递减;
当时,恒成立,所以函数在上单调递增;
当时,易得函数在和上单调递增,
在上单调递减.
(3)证明:当时,,
因为,
所以,
即,
所以.
令,,
则,
当时,,所以函数在上单调递减;
当时,,所以函数在上单调递增.
所以函数在时,取得最小值,最小值为.
所以,
即,所以或.
因为为正实数,所以.
当时,,此时不存在满足条件,
所以.
科目:高中数学 来源: 题型:
【题目】如图,已知四棱锥P-ABCD的底面是边长为2的菱形,∠BCD=60°,点E是BC边
的中点,AC,DE交于点O,,且PO⊥平面ABCD.
(1)求证:PD⊥BC;
(2)在线段AP上找一点F,使得BF∥平面PDE,并求此时四面体PDEF的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列的前项和,对任意,都有(为常数).
(1)当时,求;
(2)当时,
(ⅰ)求证:数列是等差数列;
(ⅱ)若对任意,必存在使得,已知,且,求数列的通项公式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】因市场战略储备的需要,某公司月日起,每月日购买了相同金额的某种物资,连续购买了次.由于市场变化,月日该公司不得不将此物资全部卖出.已知该物资的购买和卖出都是以份为计价单位进行交易,且该公司在买卖的过程中没有亏本,那么下面个折线图中,所有可以反映这种物资每份价格(单位:万元)的变化情况的是( )
A.①②B.①③C.②③D.③
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直三棱柱ABC-A1B1C1中,AA1ABAC2,AB⊥AC,M是棱BC的中点点P在线段A1B上.
(1)若P是线段A1B的中点,求直线MP与直线AC所成角的大小;
(2)若是的中点,直线与平面所成角的正弦值为,求线段BP的长度.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数同时满足:⑴对于定义域上的任意,恒有; ⑵对于定义域上的任意,当时,恒有,则称函数为“理想函数”.给出下列四个函数中: ①,②, ③,④,能被称为“理想函数”的有_____________(填相应的序号).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥中,,底面是梯形,AB∥CD,,AB=PD=4,CD=2,,M为CD的中点,N为PB上一点,且.
(1)若MN∥平面PAD;
(2)若直线AN与平面PBC所成角的正弦值为,求异面直线AD与直线CN所成角的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com