【题目】在直角坐标系xOy中,直线l的参数方程为,(t为参数),在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C1:ρ=2cosθ,.
(1)求C1与C2交点的直角坐标;
(2)若直线l与曲线C1,C2分别相交于异于原点的点M,N,求|MN|的最大值.
科目:高中数学 来源: 题型:
【题目】定义[x]表示不超过x的最大整数,,例如:.执行如图所示的程序框图若输入的,则输出结果为( )
A.-4.6B.-2.8C.-1.4D.-2.6
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法正确的是( )
A.设m为实数,若方程表示双曲线,则m>2.
B.“p∧q为真命题”是“p∨q为真命题”的充分不必要条件
C.命题“x∈R,使得x2+2x+3<0”的否定是:“x∈R,x2+2x+3>0”
D.命题“若x0为y=f(x)的极值点,则f’(x)=0”的逆命题是真命题
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】瑞士数学家、物理学家欧拉发现任一凸多面体(即多面体内任意两点的连线都被完全包含在该多面体中,直观上讲是指没有凹陷或孔洞的多面体)的顶点数V、棱数E及面数F满足等式V﹣E+F=2,这个等式称为欧拉多面体公式,被认为是数学领域最漂亮、简洁的公式之一,现实生活中存在很多奇妙的几何体,现代足球的外观即取自一种不完全正多面体,它是由12块黑色正五边形面料和20块白色正六边形面料构成的.20世纪80年代,化学家们成功地以碳原子为顶点组成了该种结构,排列出全世界最小的一颗“足球”,称为“巴克球(Buckyball)”.则“巴克球”的顶点个数为( )
A.180B.120C.60D.30
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,,分别为内角,,的对边,若同时满足下列四个条件中的三个:①;②;③;④.
(1)满足有解三角形的序号组合有哪些?
(2)在(1)所有组合中任选一组,并求对应的面积.
(若所选条件出现多种可能,则按计算的第一种可能计分)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在三棱锥中,底面是边长为6的正三角形,底面,且与底面所成的角为.
(1)求三棱锥的体积;
(2)若是的中点,求异面直线与所成角的大小(结果用反三角函数值表示).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com