精英家教网 > 高中数学 > 题目详情
已知F是抛物线的焦点, A、B是抛物线上两点,若是正三角形,则 的边长为        

试题分析:显然,A、B两点关于x轴对称。令,则。又抛物线的焦点,所以由得,,解得,所以则 的边长为
点评:本题容易出现差错是在解方程,它可化为一元二次方程,由于含有根式,因而要用到求根公式,最后还要注意
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
抛物线的顶点在原点,焦点在x轴的正半轴上,直线x+y-1=0与抛物线相交于A、B两点,且。 
(1) 求抛物线方程;
(2) 在x轴上是否存在一点C,使得三角形ABC是正三角形? 若存在,求出点C的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图所示,椭圆与双曲线的离心率分别是, 则的大小关系是(   )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

抛物线的焦点到双曲线的渐近线的距离为(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
设双曲线的方程为为其左、右两个顶点,是双曲线 上的任意一点,作,垂足分别为交于点.
(1)求点的轨迹方程;
(2)设的离心率分别为,当时,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,抛物线的顶点为坐标原点,焦点轴上,准线与圆相切.

(Ⅰ)求抛物线的方程;
(Ⅱ)若点在抛物线上,且,求点的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知a,b为正常数,F1,F2是两个定点,且|F1F2|=2a(a是正常数),动点P满足|PF1|+|PF2|=a2+1,则动点P的轨迹是(     )
A.椭圆B.线段C.椭圆或线段D.直线

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题14分)抛物线与直线相交于两点,且
(1)求的值。
(2)在抛物线上是否存在点,使得的重心恰为抛物线的焦点,若存在,求点的坐标,若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设点F1、F2为双曲线C:的左、右焦点,P为C上一点,若△PF1F2的面积为6,则=                

查看答案和解析>>

同步练习册答案