精英家教网 > 高中数学 > 题目详情
7.在△ABC中,$∠A=\frac{π}{3}$,BC=3,$AB=\sqrt{6}$,则∠C=$\frac{π}{4}$,AC=$\frac{{\sqrt{6}+3\sqrt{2}}}{2}$.

分析 由已知利用正弦定理可求sinC=$\frac{\sqrt{2}}{2}$,利用大边对大角可求∠C的值,利用两角和的正弦函数公式可求sinB,进而利用正弦定理即可求得AC的值.

解答 解:∵$∠A=\frac{π}{3}$,BC=3,$AB=\sqrt{6}$,
∴sinC=$\frac{AB•sinA}{BC}$=$\frac{\sqrt{6}×\frac{\sqrt{3}}{2}}{3}$=$\frac{\sqrt{2}}{2}$,
∵AB<BC,可得:∠C<∠A,
∴∠C=$\frac{π}{4}$,
∴sinB=sin(A+C)=sinAcosC+cosAsinC=$\frac{\sqrt{3}}{2}×\frac{\sqrt{2}}{2}+\frac{1}{2}×\frac{\sqrt{2}}{2}$=$\frac{\sqrt{6}+\sqrt{2}}{4}$,
∴AC=$\frac{BC•sinB}{sinA}$=$\frac{3×\frac{\sqrt{6}+\sqrt{2}}{4}}{\frac{\sqrt{3}}{2}}$=$\frac{{\sqrt{6}+3\sqrt{2}}}{2}$.
故答案为:$\frac{π}{4}$,$\frac{{\sqrt{6}+3\sqrt{2}}}{2}$.

点评 本题主要考查了正弦定理,大边对大角,两角和的正弦函数公式在解三角形中的应用,考查了计算能力和转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.设向量$\overrightarrow{a}$=(x-1,x),$\overrightarrow{b}$=(x+2,x-4),则“$\overrightarrow{a}$⊥$\overrightarrow{b}$”是“x=2”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在极坐标系中,已知$A(2,\frac{π}{6}),B(4,\frac{5π}{6})$,则A,B两点之间的距离|AB|=2$\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设函数f(x)=$\left\{\begin{array}{l}{{x}^{2}-6x+6,x≥0}\\{3x+4,x<0}\end{array}\right.$,若互不相等的实数x1,x2,x3,满足f(x1)=f(x2)=f(x3),则x1•x2•x3的取值范围是(-21,0).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数f(x)=x3-3x2-9x+3,若函数g(x)=f(x)-m在R上有3个零点,则m的取值范围为(-24,8).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某校高三年级共有学生195人,其中女生105人,男生90人.现采用按性别分层抽样的方法,从中抽取13人进行问卷调查.设其中某项问题的选择分别为“同意”、“不同意”两种,且每人都做了一种选择.下面表格中提供了被调查人答卷情况的部分信息.
同意不同意合计
女学生437
男学生4           26
(Ⅰ)完成上述统计表;
(Ⅱ)根据上表的数据估计高三年级学生该项问题选择“同意”的人数;
(Ⅲ) 从被抽取的女生中随机选取2人进行访谈,求选取的2名女生中至少有一人选择“同意”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设f(x)=$\left\{\begin{array}{l}{cosx,x∈[0,π]}\\{1,x∈(π,2π]}\end{array}\right.$则${∫}_{0}^{2π}$f(x)dx=π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.平面直角坐标系中,O为原点,A、B、C三点满足$\overrightarrow{OC}$=$\frac{3}{4}$$\overrightarrow{OA}$+$\frac{1}{4}\overrightarrow{OB}$,则$\frac{|\overrightarrow{BC}|}{|\overrightarrow{AC}|}$=(  )
A.1B.2C.3D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.平面内有$\overrightarrow{o{p_1}}+\overrightarrow{o{p_2}}+\overrightarrow{o{p_3}}=\overrightarrow 0$,且$|\overrightarrow{o{p_1}}|=|\overrightarrow{o{p_2}}|=|\overrightarrow{o{p_3}}|=1$,则△P1P2P3的形状是等边三角形.

查看答案和解析>>

同步练习册答案