分析 (Ⅰ)当a=1时,求导数,确定切线的斜率,即可求出切线方程;
(Ⅱ)记g(x)=ax+$\frac{2a-1}{x}$+1-3a-(1-a)lnx,分类讨论,利用g′(x)≥0在x∈[1,+∞)时恒成立,即可得出结论.
解答 解:(Ⅰ)当a=1时,f(x)=x+$\frac{1}{x}$-2,f′(x)=1-$\frac{1}{{x}^{2}}$,
∴f′(2)=$\frac{3}{4}$,f(2)=$\frac{1}{2}$,
∴函数y=f(x)在点(2,f(2))处的切线方程为y-$\frac{1}{2}$=$\frac{3}{4}$(x-2),即3x-4y-4=0;
(Ⅱ)记g(x)=ax+$\frac{2a-1}{x}$+1-3a-(1-a)lnx,g′(x)=$\frac{a(x-1)[x-(\frac{1}{a}-2)]}{{x}^{2}}$,
0$<a<\frac{1}{3}$时,g′(x)>0,得x>$\frac{1}{a}$-2,令g′(x)<0,得1<x<$\frac{1}{a}$-2,
∴g(x)在(1,$\frac{1}{a}$-2)上是减函数,
∴x∈(1,$\frac{1}{a}$-2),g(x)<g(1)=0,与g(x)≥0在x∈[1,+∞)时恒成立矛盾;
a≥$\frac{1}{3}$,g′(x)≥0在x∈[1,+∞)时恒成立,g(x)在[1,+∞)为增函数,
∴g(x)≥g(1)=0,符合题意,
综上所述,a≥$\frac{1}{3}$
点评 本题考查导数知识的综合运用,考查导数的几何意义,考查分类讨论的数学思想,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | $\frac{\sqrt{2}}{4}$ | B. | $\frac{3}{4}$ | C. | $\frac{1}{4}$ | D. | $\frac{\sqrt{2}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 7 | B. | 8 | C. | 9 | D. | 10 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | a>0,c<0,d>0 | B. | a>0,c>0,d<0 | C. | a<0,c<0,d<0 | D. | a<0,c>0,d<0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
温差x(℃) | 13 | 12 | 11 | 10 | 8 |
发芽数y(颗) | 30 | 26 | 25 | 23 | 16 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
年份 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 |
年份代号t | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均纯收入y | 2.9 | 3.3 | 3.6 | 4.4 | a | 5.2 | 5.9 |
A. | 4.5 | B. | 4.6 | C. | 4.7 | D. | 4.8 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com