精英家教网 > 高中数学 > 题目详情
已知椭圆的中心在原点,离心率为,一个焦点是F(-m,0)(m是大于0的常数).
(1)求椭圆的方程;
(2)设Q是椭圆上的一点,且过点F、Q的直线l与y轴交于点M,若||=2||,求直线l的斜率.
(1)=1(2)直线l的斜率是0,±2
(1)设所求椭圆方程是=1(a>b>0).
由已知,得c=m,=,∴a=2m,b=m.
故所求的椭圆方程是:=1.
(2)设Q(xQ,yQ),直线l:y=k(x+m),则点M(0,km),
=2时,由于F(-m,0),M(0,km),
∴(xQ-0,yQ-km)=2(-m-xQ,0-yQ
∴xQ==-,yQ==.
又点Q在椭圆上,
所以=1.
解得k=±2.
=-2时,
xQ==-2m,yQ==-km.
于是+=1,解得k=0.
故直线l的斜率是0,±2.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆的中心在坐标原点,以坐标轴为对称轴,且经过两点P1(,1)、P2(-,-),求椭圆方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题








(Ⅰ)求椭圆C的方程;
(Ⅱ)求证:当时,
(Ⅲ)当两点在上运动,且 =6时, 求直线MN的方程

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设椭圆的方程为 , 线段  是过左焦点  且不与  轴垂直的焦点弦. 若在左准线上存在点 , 使  为正三角形, 求椭圆的离心率  的取值范围, 并用  表示直线  的斜率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

根据下列条件求椭圆的标准方程:
(1)已知P点在以坐标轴为对称轴的椭圆上,点P到两焦点的距离分别为,过P作长轴的垂线恰好过椭圆的一个焦点;
(2)经过两点A(0,2)和B.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆=1上任意一点P,由P向x轴作垂线段PQ,垂足为Q,点M在线段PQ上,且=2,点M的轨迹为曲线E.
(1)求曲线E的方程;
(2)若过定点F(0,2)的直线l交曲线E于不同的两点G,H(点G在点F,H之间),且满足=2,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的两焦点为F1(0,-1)、F2(0,1),直线y=4是椭圆的一条准线.
(1)求椭圆方程;
(2)设点P在椭圆上,且|PF1|-|PF2|=1,求tan∠F1PF2的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知AB分别是椭圆的左右两个焦点,O为坐标原点,点P)在椭圆上,线段PBy轴的交点M为线段PB的中点。
(1)求椭圆的标准方程;
(2)点C是椭圆上异于长轴端点的任意一点,对于△ABC,求的值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知,点满足:,则(   ).
A.B.C.D.不能确定

查看答案和解析>>

同步练习册答案