精英家教网 > 高中数学 > 题目详情

【题目】某家庭进行理财投资,有两种方式,甲为投资债券等稳健型产品,乙为投资股票等风险型产品,设投资甲、乙两种产品的年收益分别为万元,根据长期收益率市场预测,它们与投入资金万元的关系分别为,(其中都为常数),函数对应的曲线,如图所示

(1)求函数的解析式

(2)若该家庭现有万元资金,全部用于理财投资,问:如何分配资金能使一年的投资获得最大收益,其最大收益是多少万元?

【答案】(1)的解析式分别为

(2)投资甲产品万元,投资乙产品万元,可以使得一年的投资获得最大收益为

【解析】

(1)函数对应的曲线都经过点,分别代入解析式,解得未知数的值,可得解析式;

(2)设投资甲产品为万元,则投资乙产品为万元,所以总收益,设,则,求函数定义域内最大值即为所求

解:(1)由函数的图象过点,所以

由函数的图象过点,所以

所以.

(2)设投资甲产品为万元,则投资乙产品为万元,

则总收益

,则

所以时,总收益最大,为.

答:(1)的解析式分别为

(2)投资甲产品万元,投资乙产品万元,可以使得一年的投资获得最大收益为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,空间四边形ABCD的对棱AD、BC成600的角,且AD=BC=a,平行于AD与BC的截面分别交AB、AC、CD、BD于E、F、G、H.

(1)求证:四边形EFGH为平行四边形;

(2)E在AB的何处时截面EFGH的面积最大?最大面积是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市有AB两家羽毛球球俱乐部,两家设备和服务都很好,但收费方式不同,A俱乐部每块场地每小时收费6元;B俱乐部按月计费,一个月中20小时以内20小时每块场地收费90元,超过20小时的部分,每块场地每小时2元,某企业准备下个月从这两家俱乐部中的一家租用一块场地开展活动,其活动时间不少于12小时,也不超过30小时.

设在A俱乐部租一块场地开展活动x小时的收费为,在B俱乐部租一块场地开展活动x小时的收费为,试求的解析式;

问该企业选择哪家俱乐部比较合算,为什么?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

时,试判断函数在区间上的单调性,并证明;

若不等式上恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某市有一条东西走向的公路,现欲经过公路上的处铺设一条南北走向的公路.在施工过程中发现在处的正北1百米的处有一汉代古迹.为了保护古迹,该市决定以为圆心, 1百米为半径设立一个圆形保护区.为了连通公路,欲再新建一条公路,点 分别在公路上,且求与圆相切.

(1)当处2百米时,求的长;

(2)当公路长最短时,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题 :若 ,则 ,下列说法正确的是( )

A. 命题 的否命题是“若 ,则

B. 命题的逆否命题是“若 ,则

C. 命题是真命题

D. 命题的逆命题是真命题

【答案】D

【解析】A. 命题 的否命题是若

B. 命题的逆否命题是,则

C. 命题是假命题,比如当x=-3,就不满足条件,故选项不正确.

D. 命题的逆命题是若是真命题.

故答案为:D.

型】单选题
束】
9

【题目】“双曲线的方程为 ”是“双曲线的渐近线方程为 ”的( )

A. 充分不必要条件 B. 必要不充分条件

C. 充分必要条件 D. 既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】动点P为椭圆 (a>b>0)上异于椭圆顶点A(a,0)、B(﹣a,0)的一点,F1 , F2为椭圆的两个焦点,动圆M与线段F1P、F1F2的延长线级线段PF2相切,则圆心M的轨迹为除去坐标轴上的点的(
A.抛物线
B.椭圆
C.双曲线的右支
D.一条直线

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列 的前 项和为 ,并且满足 .

(1)求数列 通项公式;

(2)设 为数列 的前 项和,求证: .

【答案】(1) (2)见解析

【解析】试题分析:(1)根据题意得到 ,两式做差得到;(2)根据第一问得到,由错位相减法得到前n项和,进而可证和小于1.

解析:

(1)∵

时,

时, ,即

∴数列 时以 为首项, 为公差的等差数列.

.

(2)∵

由① ②得

点睛:这个题目考查的是数列通项公式的求法及数列求和的常用方法;数列通项的求法中有常见的已知的关系,求表达式,一般是写出做差得通项,但是这种方法需要检验n=1时通项公式是否适用;数列求和常用法有:错位相减,裂项求和,分组求和等.

型】解答
束】
22

【题目】已知 分别是椭圆 )的左、右焦点, 是椭圆 上的一点,且 ,椭圆 的离心率为 .

(1)求椭圆 的标准方程;

(2)若直线 与椭圆 交于不同两点 ,椭圆 上存在点 ,使得以 为邻边的四边形 为平行四边形( 为坐标原点).

)求实数 的关系;

)证明:四边形 的面积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆上的点到它的两个焦的距离之和为,以椭圆的短轴为直径的圆经过这两个焦点,点 分别是椭圆的左、右顶点.

)求圆和椭圆的方程.

)已知 分别是椭圆和圆上的动点( 位于轴两侧),且直线轴平行,直线 分别与轴交于点 .求证: 为定值.

查看答案和解析>>

同步练习册答案