精英家教网 > 高中数学 > 题目详情

【题目】某工厂为了对新研发的产品进行合理定价,将该产品按事先拟定的价格进行试销,得到一组检测数据,如下表所示:

已知变量具有线性负相关关系,且 ,现有甲、乙、丙三位同学通过计算求得其回归直线方程分别为:甲;乙;丙,其中有且仅有一位同学的计算结果是正确的.

(1)试判断谁的计算结果正确?并求出的值;

2)若由线性回归方程得到的估计数据与检测数据的误差不超过1,则该检测数据是“理想数据”,现从检测数据中随机抽取2个,求这两个检测数据均为“理想数据”的概率.

【答案】(1),(2).

【解析】试题分析:(1)求出由此能求出由变量具有线性负相关关系,知甲是错误的,中心点坐标满足方程,从而乙是正确的;(2)由计算可得理想数据3从检测数据中随机抽取2共有15种不同的情形这两个检测数据均为理想数据3种情形根据古典概型概率公式能求出这两个检验数据均为理想数据的概率.

试题解析:(1)因为变量具有线性负相关关系,所以甲是错误的.

又易得,满足方程,故乙是正确的.由条件可得

(2)由计算可得“理想数据”有个,即.

从检测数据中随机抽取个,共有种不同的情形,

其中这两个检测数据均为“理想数据”有种情形.

故所求概率为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中, ⊥平面 分别为的中点.(19)

(I)求到平面的距离;

(II)在线段上是否存在一点,使得平面平面,若存在,试确定的位置,并证明此点满足要求;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆C: =1(a>b>0)的离心率为 ,以椭圆C的左顶点T为圆心作圆T:(x+2)2+y2=r2(r>0),设圆T与椭圆C交于点M与点N.
(1)求椭圆C的方程;
(2)求 的最小值;
(3)设点P是椭圆C上异于M,N的任意一点,且直线MP,NP分别与x轴交于点R,S,O为坐标原点,求证:|OR||OS|是定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC的边长为2的等边三角形,动点P满足 ,则 的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,菱形与正三角形所在平面互相垂直, 平面,且 .

(1)求证: 平面

2)若,求几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于实数a和b,定义运算“*”: ,设f(x)=(2x﹣1)*(x﹣1),且关于x的方程为f(x)=m(m∈R)恰有三个互不相等的实数根x1 , x2 , x3 , 则实数m的取值范围是;x1+x2+x3的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,半径为1,圆心角为 的圆弧 上有一点C.
(1)若C为圆弧AB的中点,点D在线段OA上运动,求| + |的最小值;
(2)若D,E分别为线段OA,OB的中点,当C在圆弧 上运动时,求 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】观察以下三个等式: sin215°﹣sin245°+sin15°cos45°=﹣
sin220°﹣sin250°+sin20°cos50°=﹣
sin230°﹣sin260°+sin30°cos60°=﹣
猜想出一个反映一般规律的等式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四面体中,平面平面

(Ⅰ)若 ,求四面体的体积;

(Ⅱ)若二面角,求异面直线所成角的余弦值.

查看答案和解析>>

同步练习册答案