精英家教网 > 高中数学 > 题目详情
13.给出下列说法:
①集合A={x∈Z|x=2k-1,k∈Z}与集合B={x∈Z|x=2k+1,k∈Z}是相等集合;
②若函数f(x)的定义域为[0,2],则函数f(2x)的定义域为[0,4];
③定义在R上的函数f(x)对任意两个不等实数a、b,总有$\frac{f(a)-f(b)}{a-b}$>0成立,则f(x)在R上是增函数;
④存在实数m,使f(x)=x2+mx+1为奇函数.
正确的有①③.

分析 由集合相等的概念判断①;直接求出函数的定义域判断②;由函数单调性的定义判断③;由奇函数的性质:定义在实数集上的奇函数有f(0)=0判断④.

解答 解:①集合A={x∈Z|x=2k-1,k∈Z}与集合B={x∈Z|x=2k+1,k∈Z}均为奇数集,是相等集合,故①正确;
②若函数f(x)的定义域为[0,2],则由0≤2x≤2,解得0≤x≤1,函数f(2x)的定义域为[0,1],故②错误;
③定义在R上的函数f(x)对任意两个不等实数a、b,总有$\frac{f(a)-f(b)}{a-b}$>0成立,即当a>b时,有f(a)>f(b),则f(x)在R上是增函数,故③正确;
④函数f(x)=x2+mx+1的定义域为R,若函数为奇函数,则f(0)=0,即1=0,矛盾,∴对任意实数m,函数f(x)=x2+mx+1不会是奇函数,故④错误.
故答案为:①③.

点评 本题考查命题的真假判断与应用,考查了集合相等的概念,考查了与抽象函数有关的函数定义域的求法,考查了函数单调性和奇偶性的性质,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.设向量$\overrightarrow{a}$=(3cosx,1),$\overrightarrow{b}$=(5sinx+1,cosx),且$\overrightarrow{a}$∥$\overrightarrow{b}$,则cos2x=$\frac{7}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知等差数列{an}的前n项和为Sn,已知a3=-12,a7=-4.
(1)求数列{an}的通项公式;
(2)求数列{an}的前n项和Sn及其最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=x2-2kx+8在区间[5,20]上具有单调性,则实数k的取值范围是(-∞,5]∪[20,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列函数中,满足“f(x+y)=f(x)f(y)”的单调递增函数是(  )
A.f(x)=x3B.f(x)=lgxC.$f(x)={({\frac{1}{2}})^x}$D.f(x)=3x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知定义在R上的偶函数f(x),当x∈(-∞,0]时的解析式为f(x)=x2+2x
(1)求函数f(x)在R上的解析式;
(2)画出函数f(x)的图象并直接写出它的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆的两个焦点坐标分别为F1(-1,0),F2(1,0),并且经过点M(1,$\frac{\sqrt{2}}{2}$).
(1)求椭圆的标准方程;
(2)如果直线y=x+m与这个椭圆交于两个不同的点,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.找规律填数:$\frac{1}{2}$,$\frac{3}{5}$,$\frac{1}{2}$,$\frac{7}{17}$,$\frac{2n-1}{{n}^{2}+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知△ABC的角A、B、C的对边分别为a、b、c,其面积S=4$\sqrt{3}$,∠B=60°,且a2+c2=2b2;等差数列{an}中,且a1=a,公差d=b.数列{bn}的前n项和为Tn,且Tn-2bn+3=0,n∈N*
(1)求数列{an}、{bn的通项公式;
(2)设cn=$\left\{\begin{array}{l}{{a}_{n},n为奇数}\\{{b}_{n},n为偶数}\end{array}\right.$,求数列{cn}的前2n+1项和P2n+1

查看答案和解析>>

同步练习册答案