精英家教网 > 高中数学 > 题目详情
(2013•永州一模)已知动圆过定点A(2,0),且与直线X=-2相切.
(1)求动圆圆心的轨迹C的方程;
(2)是否存在过点(0,1)的直线l,与轨迹C交于P,Q两点,且以线段PQ为直径的圆过定点A?若存在,求出直线l的方程;若不存在,说明理由.
分析:(1)利用动圆过定点A(2,0),且与直线X=-2相切,根据抛物线的定义,可得轨迹C为以A(2,0)为焦点,X=-2为准线的抛物线,由此可得动圆圆心的轨迹C的方程;
(2)设出直线方程与抛物线方程联立,利用韦达定理及向量知识,即可求出直线l的方程.
解答:解:(1)由题意可知,圆心到定点A(2,0)的距离与到定直线X=-2的距离相等,
由抛物线定义可知,轨迹C为以A(2,0)为焦点,X=-2为准线的抛物线,
∴p=2,∴抛物线方程为y2=8x                  …(4分)
(2)假设存在直线l符合题意.…(5分)
由题意易知,直线l的斜率k存在且不为零,
又因过点(0,1),故设直线l的方程为y=kx+1,…(6分)
联立直线与抛物线方程得
y=kx+1
y2=8x
,消元整理得k2x2+(2k-8)x+1=0,
设交点坐标为P(x1,y1),Q(x2,y2),则△=(2k-8)2-4k2>0,∴k<2 ①
且x1+x2=-
2k-8
k2
x1x2=
1
k2
;                                         …(9分)
AP
AQ
=(x1-2,y1)•(x2-2,y2)=(k2+1)x1x2+(k-2)(x1+x2)+5
=(k2+1)•
1
k2
+(k-2)•(-
2k-8
k2
)+5=
4k2+12k-15
k2
=0
∴k=-
3
2
±
6
符合①,…(12分)
所以存在符合题意的直线l,其方程为y=(-
3
2
±
6
)x+1.…(13分)
点评:本题考查轨迹方程,考查抛物线的定义,考查直线与抛物线的位置关系,考查向量知识的运用,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•永州一模)已知函数f(x)=mlnx+
1
x
,(其中m为常数)
(1)试讨论f(x)在区间(0,+∞)上的单调性;
(2)令函数h(x)=f(x)+
1
m
lnx
-x.当m∈[2,+∞)时,曲线y=h(x)上总存在相异两点P(x1,f(x1))、Q(x2,f(x2)),使得过P、Q点处的切线互相平行,求x1+x2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•永州一模)提高大桥的车辆通行能力可改善整个城市的交通状况.一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数.当车流密度不超过50辆/千米时,车流速度为30千米/小时.研究表明:当50<x≤200时,车流速度v与车流密度x满足v(x)=40-
k
250-x
.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0千米/小时.
(Ⅰ)当0<x≤200时,求函数v(x)的表达式;
(Ⅱ)当车流密度x为多大时,车流量(单位时间内通过桥上观测点的车辆数,单位:辆/小时)f(x)=x•v(x)可以达到最大,并求出最大值.(精确到个位,参考数据
5
≈2.236

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•永州一模)已知A,B是圆C(为圆心)上的两点,|
AB
|=2,则
AB
AC
=
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•永州一模)设集合A={x|-1<x<2},B={x|x2≤1},则A∩B=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•永州一模)“x≠3”是“|x-3|>0”的(  )

查看答案和解析>>

同步练习册答案