精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系中,倾斜角为的直线的参数方程为为参数).在以坐标原点为极点,轴正半轴为极轴的极坐标系中,曲线的极坐标方程为.

(1)求直线的普通方程与曲线的直角坐标方程;

(2)若直线与曲线交于两点,且,求直线的倾斜角.

【答案】(1) ; (2).

【解析】

1)根据平方关系消参数得直线的普通方程,根据得曲线的直角坐标方程(2)利用直线参数方程几何意义求解.

(1)因为直线的参数方程为为参数),

时,直线的直角坐标方程为

时,直线的直角坐标方程为

因为

因为,所以

所以的直角坐标方程为

(2)解法1:曲线的直角坐标方程为

将直线的参数方程代入曲线的方程整理,得

因为,可设该方程的两个根为

所以

整理得

因为,所以

解得

综上所述,直线的倾斜角为

解法2:直线与圆交于两点,且

故圆心到直线的距离

①当时,直线的直角坐标方程为,符合题意.

②当时,直线的方程为

所以,整理得

解得

综上所述,直线的倾斜角为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆C=1ab0)的离心率为,其内接正方形的面积为4

(Ⅰ)求椭圆C的标准方程;

(Ⅱ)设M为椭圆C的右顶点,过点且斜率不为0的直线l与椭圆C相交于PQ两点,记直线PMQM的斜率分别为k1k2,求证:k1k2为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某超市开展年终大回馈,设计了两种答题游戏方案:

方案一:顾客先回答一道多选题,从第二道开始都回答单选题;

方案二:顾客全部选择单选题进行回答;

其中每道单选题答对得2分,每道多选题答对得3分,无论单选题还是多选题答错都得0分,每名参与的顾客至多答题3道.在答题过程中得到3分或3分以上立刻停止答题,并获得超市回馈的赠品.

为了调查顾客对方案的选择情况,研究人员调查了参与游戏的500名顾客,所得结果如下表所示:

男性

女性

选择方案一

150

80

选择方案二

150

120

(1)是否有95%的把握认为方案的选择与性别有关?

(2)小明回答每道单选题的正确率为0.8,多选题的正确率为0.75,.

①若小明选择方案一,记小明的得分为,求的分布列及期望;

②如果你是小明,你觉得选择哪种方案更有可能获得赠品,请通过计算说明理由.

附:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题:关于的不等式无解;命题:指数函数上的增函数.

(1)若命题为真命题,求实数的取值范围;

(2)若满足为假命题且为真命题的实数取值范围是集合,集合,且,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为菱形,,且.

(1)求证:平面平面

(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

)当时,证明:有且只有一个零点;

)求函数的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】非空有限集合是由若干个正实数组成,集合的元素个数.对于任意,数中至少有一个属于,称集合好集”:否则,称集合坏集”.

1)判断好集”,还是坏集

2)题设的有限集合,既有大于1的元素,又有小于1的元素,证明:集合坏集”.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的左、右焦点分别为,实轴长为4,渐近线方程为,点N在圆上,则的最小值为( )

A. B. 5C. 6D. 7

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2014年7月18日15时,超强台风“威马逊”登陆海南省.据统计,本次台风造成全省直接经济损失119.52亿元.适逢暑假,小明调查住在自己小区的50户居民由于台风造成的经济损失,作出如下频率分布直方图:

经济损失

4000元以下

经济损失

4000元以上

合计

捐款超过500元

30

捐款低于500元

6

合计

(1)台风后区委会号召小区居民为台风重灾区捐款,小明调查的50户居民捐款情况如上表,在表格空白处填写正确数字,并说明是否有以上的把握认为捐款数额是否多于或少于500元和自身经济损失是否到4000元有关?

(2)台风造成了小区多户居民门窗损坏,若小区所有居民的门窗均由李师傅和张师傅两人进行维修,李师傅每天早上在7:00到8:00之间的任意时刻来到小区,张师傅每天早上在7:30到8:30分之间的任意时刻来到小区,求连续3天内,李师傅比张师傅早到小区的天数的数学期望.

附:临界值表

参考公式: .

查看答案和解析>>

同步练习册答案