精英家教网 > 高中数学 > 题目详情

【题目】如图,在三棱柱中, 底面 是棱上一点.

I)求证:

II)若 分别是 的中点,求证: 平面

III)若二面角的大小为,求线段的长.

【答案】1)见解析(2)见解析(3

【解析】试题分析:(1先证明可得;(2)连接于点,根据几何知识可得可得,根据线面平行的判定定理可得平面;(3)建立空间直角坐标系,利用向量,通过计算求的长。

试题解析:I平面

中,

II)连接于点

∵四边形是平行四边形,

的中点.

又∵ 分别是 的中点,

,且

∴四边形是平行四边形,

平面

平面

III,且平面

两两垂直

为原点, 分别为轴, 轴, 轴建立空间直角坐标系

,则

设平面的法向量为

则有,令

又平面的法向量为

∵二面角的大小为

解得

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,椭圆的左、右焦点分别为 也是抛物线的焦点,点在第一象限的交点,且.

(1)求的方程;

(2)平面上的点满足,直线,且与交于两点,若,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 ,其中是实数.

1解关于的不等式

2)若求关于的方程实根的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在中,角的对边分别是且有.

1)求

(2)若面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆 过圆上任意一点轴引垂线垂足为(点可重合),点的中点.

(1)求的轨迹方程;

(2)若点的轨迹方程为曲线,不过原点的直线与曲线交于两点,满足直线 的斜率依次成等比数列,求面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线,直线过抛物线焦点,且与抛物线交于 两点,以线段为直径的圆与抛物线准线的位置关系是( )

A. 相离 B. 相交 C. 相切 D. 不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,椭圆短轴的一个端点与两个焦点构成的三角形的面积为.

(1)求椭圆的方程式;

(2)已知动直线与椭圆相交于两点.

①若线段中点的横坐标为,求斜率的值;

②已知点,求证: 为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线

(1)求曲线在点处的切线方程;

(2)求过点的曲线的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆 ,直线过定点.

(Ⅰ)若与圆相切,求的方程;

(Ⅱ)若与圆相交于两点,求的面积的最大值,并求此时直线的方程.(其中点是圆的圆心)

查看答案和解析>>

同步练习册答案