精英家教网 > 高中数学 > 题目详情
7.已知函数f(x-3)=lg$\frac{x}{x-6}$.
(1)求函数f(x)的表达式;
(2)判断并证明函数f(x)的奇偶性.

分析 (1)利用换元法,可得函数f(x)的表达式;
(2)由(1)知定义域关于原点对称,再证f(-x)=-f(x),由定义可判断出函数为奇函数.

解答 解:(1)设x-3=t,则x=t+3,
∴f(t)=lg$\frac{t+3}{t-3}$,
∴f(x)=lg$\frac{x+3}{x-3}$;
(2)由(1)可得定义域为 (-∞,-3)∪(3,+∞)
∵f(-x)=lg$\frac{-x+3}{-x-3}$=-lg$\frac{x+3}{x-3}$=-f(x)
∴f(x)是奇函数.

点评 本题考查对数函数的定义域,奇函数的证明,考查运算能力,变形转化的能力.求解本题关键是熟练掌握对数和运算法则.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=a2x2+ax在区间(0,1)上有零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知,a,b,c(a>b>c)是△ABC的角A,B,C的对边,若4sin2(B+C)-3=0,则$\frac{asin(\frac{π}{6}-C)}{b-c}$的值为(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.$\frac{1}{4}$D.$\frac{\sqrt{3}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.请在“充分不必要”“必要不充分”“充要”“既不充分也不必要”中选择一个使命题正确的填写到下面各题的横线上.
(1)若A⊆B,则“x∈A”是“x∈B”的充分不必要条件;
(2)“x=$\frac{π}{6}$”是“sinx=$\frac{1}{2}$”的充分不必要条件;
(3)“α>β”是“sinα>sinβ”的既不充分也不必要条件;
(4)在△ABC中,“A>B”是“sinA>sinB”的充要条件;
(5)已知直线l1:y=k1x+b1,l2:y=k2x+b2,则“k1=k2”是“l1∥l2”的必要不充分条件;
(6)“ab>0”是“方程$\frac{{x}^{2}}{a}$+$\frac{{y}^{2}}{b}$=1表示椭圆”的既不充分也不必要条件;
(7)“a是第二象限角”是“sinα•tanα<0”的充分不必要条件;
(8)“|a|=|b|”是“a=b”的必要不充分条件;
(9)“实数λ=0”是“向量λ$\overrightarrow{a}$=0”的充分不必要条件;
(10)“四边形的两条对角线相等”是“四边形是等腰梯形”的必要不充分条件.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在△ABC中,已知$\overrightarrow{AB}$=(2,4,0),$\overrightarrow{BC}$=(-1,3,0),则∠ABC=$\frac{3π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知集合A={x|x2-2x+1<a2},B={x|-1<x<2},若A⊆B,则正实数a的取值范围为(  )
A.(1,+∞)B.(1,2]C.(0,1]D.(0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列各组中的两个函数是相同函数的为(  )
A.f(x)=$\frac{(x+3)(x-5)}{x+3}$,g(x)=x-5B.f(x)=x,g(x)=$\sqrt{x^2}$
C.f(x)=x,g(x)=$\root{3}{x^3}$D.f(x)=$\sqrt{x+1}\sqrt{x-1}$,g(x)=$\sqrt{(x+1)(x-1)}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.平移函数y=|sinx|的图象得到函数y=|cosx|的图象,以下平移方法错误的是(  )
A.向左或向右平移$\frac{π}{4}$个单位B.向右平移$\frac{π}{2}$个单位
C.向左平移$\frac{π}{2}$个单位D.向左或向右平移$\frac{3π}{2}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数y=sin(ωx+φ)的部分图象如图,则f($\frac{π}{2}$)=(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

同步练习册答案