精英家教网 > 高中数学 > 题目详情
14.下列函数既是奇函数,又在(0,1)上是增函数的是(  )
A.y=-x3B.y=sinxC.y=log3xD.y=3x+3-x

分析 运用奇偶性的定义和导数的运用,结合常见函数的奇偶性和单调性,即可得到既是奇函数又是增函数的函数.

解答 解:由奇函数就可以排除C、D选项,由在(0,1)上是增函数可排除A选项,
故选B

点评 本题考查函数的奇偶性和单调性的判断,注意运用奇偶性和单调性的定义结合常见函数的奇偶性和单调性,属于基础题和易错题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知直线l的参数方程是$\left\{{\begin{array}{l}{x=\frac{{\sqrt{2}}}{2}t}\\{y=\frac{{\sqrt{2}}}{2}t+4\sqrt{2}}\end{array}}$(t是参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.曲线C的极坐标方程为ρ=4cos(θ+$\frac{π}{4}$).
(1)判断直线l与曲线C的位置关系;
(2)过直线l上的点作曲线C的切线,求切线长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知A={x|x+1>0},B={x|x2+x-2<0},则A∪B=(  )
A.(-2,+∞)B.(-2,-1)C.(-1,1)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=x2sinx+2xcosx,x∈(-2π,2π),则其导函数f′(x)的图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知$\frac{{{{cos}^2}(α-\frac{π}{2})}}{{sin(\frac{5π}{2}+α)•sin(π+α)}}$=$\frac{1}{2}$.
(Ⅰ)求tanα的值;
(Ⅱ)求sin2α+cos2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.定义域为R的偶函数y=f(x)满足f(x+1)=f(x-4),且x∈[-$\frac{5}{2}$,0]时,f(x)=-x2,则f(2016)+f($\frac{9}{2}$)的值等于(  )
A.-$\frac{5}{4}$B.-$\frac{3}{4}$C.$\frac{3}{4}$D.$\frac{5}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知a∈($\frac{π}{2}$,π),sina=$\frac{\sqrt{5}}{5}$.
(Ⅰ)求tan($\frac{π}{4}$+2a)的值;
(Ⅱ)求cos($\frac{5π}{6}$-2a)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设等差数列{an}的前n项和为Sn,已知a2=2,S5=15,若bn=$\frac{1}{{a}_{n+1}^{2}-1}$,则数列{bn}的前10项和为(  )
A.$\frac{11}{24}$B.$\frac{175}{132}$C.$\frac{175}{264}$D.$\frac{17}{24}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.一个袋中装有6个黄球和4个白球(形状大小均相同),不放回地依次摸出2个球,在第1次摸出黄球的条件下,第2次也摸到黄球的概率为(  )
A.$\frac{3}{5}$B.$\frac{1}{3}$C.$\frac{5}{9}$D.$\frac{1}{10}$

查看答案和解析>>

同步练习册答案