精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线方程为焦点,为抛物线准线上一点,为线段与抛物线的交点,定义:.

(1)当时,求

(2)证明:存在常数,使得.

(3)为抛物线准线上三点,且,判断的关系.

【答案】(1);(2)证明见解析;(3).

【解析】

1)根据,可以求出直线的斜率,这样可以求出直线的方程,与抛物线方程联立,求出的坐标,求出的值;

2)当,可以求出的值;由抛物线的对称性,可设

设出直线的方程,与抛物线方程联立,可以求出的坐标,可以证明出,这样就证明出存在常数,使得

3)设,利用抛物线的定义,计算

用作差法比较的大小,最后用作差法比较

的大小,最后判断出.

(1)因为.

联立方程

.

(2)当,易得

不妨设

直线,则

联立

.

(3)设,则

因为

又因

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知曲线的方程为,集合,若对于任意的,都存在,使得成立,则称曲线曲线,下列方程所表示的曲线中,是曲线的有______(写出所有曲线的序号)

;②;③;④;⑤.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆,其中,点是椭圆的右顶点,射线与椭圆的交点为.

1)求点的坐标;

2)设椭圆的长半轴、短半轴的长分别为,当的值在区间中变化时,求的取值范围;

3)在(2)的条件下,以为焦点,为顶点且开口方向向左的抛物线过点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司航拍宣传画报,为了凸显公司文化,选择如图所示的边长为2百米的正三角形空地进行布置拍摄场景,在的中点处安装中央聚光灯,为边上得可以自由滑动的动点,其中设置为普通色彩灯带(灯带长度可以自由伸缩),线段部分需要材料 (单位:百米)装饰用以增加拍摄效果因材料价格昂贵,所以公司要求采购材料使用不造成浪费.

(1)当垂直时,采购部需要采购多少百米材料

(2)为了增加拍摄动态效果需要,现要求点边上滑动,且,则购买材料的范围是多少才能满足动态效果需要又不会造成浪费.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设定义在上的函数.

(1)求函数的单调区间;

(2)若存在,使得成立,求实数的取值范围;

(3)定义:如果实数满足, 那么称更接近.对于(2)中的,问:哪个更接近?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面是菱形,底面分别是的中点,.

I)证明:

II)求直线与平面所成角的正弦值;

III)在边上是否存在点,使所成角的余弦值为,若存在,确定点位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,对于点,若函数满足:,都有,就称这个函数是点的“限定函数”.以下函数:①,②,③,④,其中是原点的“限定函数”的序号是______.已知点在函数的图象上,若函数是点的“限定函数”,则的取值范围是______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场营销人员进行某商品的市场营销调查时发现,每回馈消费者一定的点数,该商品每天的销量就会发生一定的变化,经过试点统计得到以下表:

反馈点数t

1

2

3

4

5

销量(百件)/天

0.5

0.6

1

1.4

1.7

(Ⅰ)经分析发现,可用线性回归模型拟合当地该商品销量(千件)与返还点数之间的相关关系.试预测若返回6个点时该商品每天的销量;

(Ⅱ)若节日期间营销部对商品进行新一轮调整.已知某地拟购买该商品的消费群体十分庞大,经营销调研机构对其中的200名消费者的返点数额的心理预期值进行了一个抽样调查,得到如下一份频数表:

返还点数预期值区间

(百分比)

[1,3)

[3,5)

[5,7)

[7,9)

[9,11)

[11,13)

频数

20

60

60

30

20

10

将对返点点数的心理预期值在的消费者分别定义为“欲望紧缩型”消费者和“欲望膨胀型”消费者,现采用分层抽样的方法从位于这两个区间的30名消费者中随机抽取6名,再从这6人中随机抽取3名进行跟踪调查,求抽出的3人中至少有1名“欲望膨胀型”消费者的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三角形ABC为直角三角形,且EF分别为ABAC的中点,GH分别为BEAF的中点(如图一),现在沿EF将三角形AEF折起至,连接GH(如图二).

1)证明:平面

2)当平面平面EFCB时,求异面直线GHEF所成角的余弦值.

查看答案和解析>>

同步练习册答案