精英家教网 > 高中数学 > 题目详情

【题目】若函数h(x)满足
①h(0)=1,h(1)=0;
②对任意a∈[0,1],有h(h(a))=a;
③在(0,1)上单调递减.则称h(x)为补函数.已知函数h(x)= (λ>﹣1,p>0)
(1)判函数h(x)是否为补函数,并证明你的结论;
(2)若存在m∈[0,1],使得h(m)=m,若m是函数h(x)的中介元,记p= (n∈N+)时h(x)的中介元为xn , 且Sn= ,若对任意的n∈N+ , 都有Sn ,求λ的取值范围;
(3)当λ=0,x∈(0,1)时,函数y=h(x)的图象总在直线y=1﹣x的上方,求P的取值范围.

【答案】
(1)

解:函数h(x)是补函数,证明如下:

①h(0)= =1,h(1)= =0;

②任意a∈[0,1],有h(h(a))=h( )= =a

③令g(x)=(h(x))p,有g′(x)= =

又因为λ>﹣1,p>0,

所以当x∈(0,1)时,g′(x)<0,所以g(x)在(0,1)上是减函数,故h(x)在(0,1)上是减函数

由上证,函数h(x)是补函数


(2)

解:当p= (n∈N*),由h(x)=x得

(i)当λ=0时,中介元xn=

(ii)当λ>﹣1且λ≠0时,由(*)得 = ∈(0,1)或 = (0,1),得中介元xn=

综合(i)(ii):对任意的λ>﹣1,中介元为xn=

于是当λ>﹣1时,有Sn= = =

当n无限增大时, 无限接近于0,Sn无限接近于

故对任意的非零自然数n,Sn 等价于 ,即λ∈[3,+∞)


(3)

解:当λ=0时,h(x)= ,中介元为

<>(i)0<p≤1时, ,中介元为 ,所以点(xp,h(xp))不在直线y=1﹣x的上方,不符合条件;

(ii)当p>1时,依题意只需 >1﹣x在x∈(0,1)时恒成立,也即xp+(1﹣x)p<1在x∈(0,1)时恒成立

设φ(x)=xp+(1﹣x)p,x∈(0,1),则φ′(x)=p(xp1﹣(1﹣x)p1

令φ′(x)=0,得x= ,且当x∈(0, )时,φ′(x)<0,当x∈( ,1)时,φ′(x)>0,又φ(0)=φ(1)=1,所以x∈(0,1)时,φ(x)<1恒成立.

综上,p的取值范围是(1,+∞)


【解析】(1)可通过对函数h(x)= (λ>﹣1,p>0)进行研究,探究其是否满足补函数的三个条件来确定函数是否是补函数;
(2)由题意,先根据中介元的定义得出中介元xn通式,代入Sn= ,计算出和,然后结合极限的思想,利用Sn 得到参数的不等式,解出它的取值范围;
(3)λ=0,x∈(0,1)时,对参数p分类讨论由函数y=h(x)的图象总在直线y=1﹣x的上方这一位置关系进行转化,解出p的取值范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换.每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立.甲、乙的一局比赛中,甲先发球.
(1)求开始第4次发球时,甲、乙的比分为1比2的概率;
(2)ξ表示开始第4次发球时乙的得分,求ξ的期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】经市场调查,新街口某新开业的商场在过去一个月内(以30天计),顾客人数(千人)与时间(天)的函数关系近似满足),人均消费(元)与时间(天)的函数关系近似满足

(1)求该商场的日收益(千元)与时间(天)( )的函数关系式;

(2)求该商场日收益的最小值(千元).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].

(1)求图中的值;

(2)根据频率分布直方图,估计这100名学生语文成绩的平均分,众数,中位数;

(3)若这100名学生语文成绩某些分数段的人数()与数学成绩相应分数段的人数()之比如下表所示,求数学成绩在[50,90)之外的人数.

分数段

[50,60)

[60,70)

[70,80)

[80,90)

1:1

2:1

3:4

4:5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数在点处的切线与直线垂直.

(1)求函数的极值;

(2)若上恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知在极坐标系和直角坐标系中,极点与直角坐标系的原点重合,极轴与轴的正半轴重合,直线为参数),圆.

(Ⅰ)将直线的参数方程化为普通方程,圆的极坐标方程化为直角坐标方程;

(Ⅱ)已知是直线上一点,是圆上一点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax2+bx+1(a,b为实数),

(1)f(-1)=0,且对任意实数x均有f(x)0成立,F(x)的表达式;

(2)(1)的条件下,x[-2,2],g(x)=f(x)-kx是单调函数,求实数k的取值范围;

(3)mn<0,m+n>0,a>0,f(x)满足f(-x)=f(x),试比较F(m)+F(n)的值与0的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于x的方程x[02]时有唯一解,求m取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,∠ACB=45°,BC=3,过动点A作AD⊥BC,垂足D在线段BC上且异于点B,连接AB,沿AD将△ABD折起,使∠BDC=90°(如图2所示),

(1)当BD的长为多少时,三棱锥A﹣BCD的体积最大;
(2)当三棱锥A﹣BCD的体积最大时,设点E,M分别为棱BC,AC的中点,试在棱CD上确定一点N,使得EN⊥BM,并求EN与平面BMN所成角的大小.

查看答案和解析>>

同步练习册答案