精英家教网 > 高中数学 > 题目详情
15.将函数y=sinx(x∈R)的图象上所有点的横坐标变为原来的$\frac{1}{2}$倍(纵坐标不变),再将所得图象向右平移$\frac{π}{6}$个单位长度,得到函数y=g(x)的图象,则y=g(x)的单调递增区间为(  )
A.[-$\frac{π}{12}$+kπ,$\frac{5π}{12}$+kπ](k∈Z)B.[-$\frac{π}{6}$+kπ,$\frac{π}{3}$+kπ](k∈Z)
C.[-$\frac{2π}{3}$+4kπ,$\frac{4π}{3}$+4kπ](k∈Z)D.[-$\frac{5π}{6}$+4kπ,$\frac{7π}{6}$+4kπ](k∈Z)

分析 根据函数y=Asin(ωx+φ)的图象变换规律,求得g(x)的解析式,再利用正弦函数的单调性求得g(x)的单调递增区间.

解答 解:将函数y=sinx(x∈R)的图象上所有点的横坐标变为原来的$\frac{1}{2}$倍(纵坐标不变),可得y=sin2x(x∈R)的图象;
再将所得图象向右平移$\frac{π}{6}$个单位长度,得到函数y=g(x)=sin2(x-$\frac{π}{6}$)=sin(2x-$\frac{π}{3}$)的图象.
令2kπ-$\frac{π}{2}$≤2x-$\frac{π}{3}$≤2kπ+$\frac{π}{2}$,求得kπ-$\frac{π}{12}$≤x≤kπ+$\frac{5π}{12}$,可得函数的增区间为[kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$],k∈Z,
故选:A.

点评 本题主要考查函数y=Asin(ωx+φ)的图象变换规律,正弦函数的单调性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.如图,要在山坡上A、B两处测量与地面垂直的铁塔CD的高,由A、B两处测得塔顶C的仰角分别为60°和45°,AB长为40m,斜坡与水平面成30°角,则铁塔CD的高为$\frac{40\sqrt{3}}{3}$m.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知△ABC的周长为10,且A(-2,0),B(2,0),则C点的轨迹方程是(  )
A.$\frac{{x}^{2}}{5}$+$\frac{{y}^{2}}{9}$=1(y≠0)B.$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{5}$=1(y≠0)
C.$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{12}$=1(y≠0)D.$\frac{{x}^{2}}{12}$+$\frac{{y}^{2}}{16}$=1(y≠0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数f(x)=x2-4x+5-2lnx的零点个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.给出下列类比推理:
①已知a,b∈R,若a-b=0,则a=b,类比得已知z1,z2∈C,若z1-z2=0,则z1=z2
②已知a,b∈R,若a-b>0,则a>b,类比得已知z1,z2∈C,若z1-z2>0,则z1>z2
③由实数绝对值的性质|x|2=x2类比得复数z的性质|z|2=z2
其中推理结论正确的是①.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,直三棱柱ABC-A1B1C1中,D是AB的中点,AB=2$\sqrt{2}$,AA1=AC=CB=2.
(Ⅰ)证明:CD⊥平面AA1B1B;
(Ⅱ)求三棱锥V${\;}_{A-{A}_{1}DC}$的体积.

查看答案和解析>>

科目:高中数学 来源:2015-2016学年江苏泰兴中学高二上学期期末数学(文)试卷(解析版) 题型:填空题

过点作直线交椭圆两点,若点恰为线段的中点,则直线的方程为

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知直线l的极坐标方程是$ρsin(θ-\frac{π}{6})=\frac{3}{2}$.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,曲线C的参数方程是$\left\{\begin{array}{l}x=t+\frac{1}{t}\\ y=t-\frac{1}{t}\end{array}\right.$(t为参数),直线l和曲线C相交于A,B两点,求线段AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.分解因式:(x4+x2-1)2+(x4+x2-1)-2.

查看答案和解析>>

同步练习册答案