精英家教网 > 高中数学 > 题目详情
6.函数y=$\frac{1}{x}$在区间[1,2],[2,3],[3,4]的平均变化率分别为k1,k2,k3,则(  )
A.k1<k2<k3B.k2<k1<k3C.k3<k2<k1D.k1<k3<k2

分析 根据函数的变化率的公式分别计算,再比较即可.

解答 解:k1=$\frac{1}{2}$-1=-$\frac{1}{2}$,k2=$\frac{1}{3}$-$\frac{1}{2}$=-$\frac{1}{6}$,k3=$\frac{1}{4}$-$\frac{1}{3}$=-$\frac{1}{12}$,
∴k1<k2<k3
故选:A

点评 本题考查了函数的平均变化率,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知集合A={x|$\frac{1}{2}$<2x<4},B={x|0<log2x<2}.
(1)求A∩B和A∪B;
(2)记M-N={x|x∈M,且x∉N},求A-B与B-A.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.执行如图所示的程序框图,若输入的n值为7,则输出的S值为(  )
A.$\sqrt{7}$B.2$\sqrt{2}$C.3D.$\sqrt{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.直线l1:x+(1-a)y-3=0与l2:(a-1)x+ay+3=0互相垂直,则实数a=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若定义运算a⊙b=$\left\{\begin{array}{l}{b,a≥b}\\{a,a<b}\end{array}\right.$则函数f(x)=x⊙(2-x)的最大值是1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知服从正态分布N(μ,σ2)的随机变量,在区间(μ-σ,μ+σ),(μ-2σ,μ+2σ)和(μ-3σ,μ+3σ)内取值的概率分别为68.3%,95.4%和99.7%.某大型国有企业为10000名员工定制工作服,设员工的身高(单位:cm)服从正态分布N(173,52),则适合身高在163~178cm范围内员工穿的服装大约要定制(  )
A.6830套B.9540套C.8185套D.9755套

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设数列{an}是公差大于0的等差数列,Sn为数列{an}的前n项和.已知S3=9,且2a1,a3-1,a4+1构成等比数列.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足bn=$\frac{1}{{{a_n}{a_{n+1}}}}$(n∈N*),设Tn要是数列{bn}在前n项和,证明:$\frac{1}{3}$≤Tn<$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知数列{an}的通项公式an=11-2n.
(1)求数列{an}的前n项和Sn
(2)若设Tn=|a1|+|a2|+…+|an|,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知定义在(-∞,3]上单调减函数f(x)使得f(1+sin2x)≤f(a-2cosx)对一切实数x都对立,则a的取值范围为(  )
A.(-∞,-1]B.(-∞,1]C.[-1,+∞)D.[1,+∞)

查看答案和解析>>

同步练习册答案