精英家教网 > 高中数学 > 题目详情
14.设两向量e1、e2满足|${\overrightarrow{e}}_{1}$|=2,|${\overrightarrow{e}}_{2}$|=1,${\overrightarrow{e}}_{1}$、${\overrightarrow{e}}_{2}$的夹角为60°,若向量2t${\overrightarrow{e}}_{1}$+7${\overrightarrow{e}}_{2}$与向量${\overrightarrow{e}}_{1}$+t${\overrightarrow{e}}_{2}$的夹角为[0,$\frac{π}{2}$),求实数t的取值范围.

分析 两向量e1、e2满足|${\overrightarrow{e}}_{1}$|=2,|${\overrightarrow{e}}_{2}$|=1,${\overrightarrow{e}}_{1}$、${\overrightarrow{e}}_{2}$的夹角为60°,不妨设$\overrightarrow{{e}_{2}}$=(1,0),$\overrightarrow{{e}_{1}}$=$(1,\sqrt{3})$,可得2t${\overrightarrow{e}}_{1}$+7${\overrightarrow{e}}_{2}$,${\overrightarrow{e}}_{1}$+t${\overrightarrow{e}}_{2}$,由于向量2t${\overrightarrow{e}}_{1}$+7${\overrightarrow{e}}_{2}$与向量${\overrightarrow{e}}_{1}$+t${\overrightarrow{e}}_{2}$的夹角为[0,$\frac{π}{2}$),可得(2t${\overrightarrow{e}}_{1}$+7${\overrightarrow{e}}_{2}$)(${\overrightarrow{e}}_{1}$+t${\overrightarrow{e}}_{2}$)=(2t+7)(t+1)+21t>0,解出即可得出.

解答 解:∵两向量e1、e2满足|${\overrightarrow{e}}_{1}$|=2,|${\overrightarrow{e}}_{2}$|=1,${\overrightarrow{e}}_{1}$、${\overrightarrow{e}}_{2}$的夹角为60°,
不妨设$\overrightarrow{{e}_{2}}$=(1,0),$\overrightarrow{{e}_{1}}$=$(1,\sqrt{3})$,
则2t${\overrightarrow{e}}_{1}$+7${\overrightarrow{e}}_{2}$=(2t+7,7$\sqrt{3}$),${\overrightarrow{e}}_{1}$+t${\overrightarrow{e}}_{2}$=$(t+1,t\sqrt{3})$.
∵向量2t${\overrightarrow{e}}_{1}$+7${\overrightarrow{e}}_{2}$与向量${\overrightarrow{e}}_{1}$+t${\overrightarrow{e}}_{2}$的夹角为[0,$\frac{π}{2}$),
∴向量(2t${\overrightarrow{e}}_{1}$+7${\overrightarrow{e}}_{2}$)(${\overrightarrow{e}}_{1}$+t${\overrightarrow{e}}_{2}$)=(2t+7)(t+1)+21t>0,
化为2t2+30t+7>0,
解得t>$\frac{-15+\sqrt{211}}{2}$或t<$\frac{-15-\sqrt{211}}{2}$.
∴实数t的取值范围是t>$\frac{-15+\sqrt{211}}{2}$或t<$\frac{-15-\sqrt{211}}{2}$.

点评 本题考查了向量的坐标运算、向量夹角公式、数量积运算性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知Eξ=5,η=3ξ+1,求Eη之值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.${∫}_{b}^{a}\sqrt{(a-x)(x-b)}dx(b>a)$=$\frac{π(b-a)^{2}}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,已知F1、F2分别是椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点,顶点B的坐标是(0,b),连接BF2并延长交椭圆于点M,点M关于x轴的对称点为N,连接F1、N.
(I)若点N的坐标为($\frac{8}{3}$,$\frac{2}{3}$),且BF2=2$\sqrt{2}$,求椭圆的方程;
(Ⅱ)若F1N⊥MB,求椭圆离心率e的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数f(x)=$\left\{\begin{array}{l}{(a-1)x+\frac{5}{2},x≤1}\\{\frac{2a+1}{x},x>1}\end{array}\right.$,在定义域R上满足对任意实数x1≠x2都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0,则a的取值范围是(-$\frac{1}{2}$,$\frac{1}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.直线l过点P(2,3)且分别与x、y正半轴于A,B两点,O为原点.
(1)当|OA|•|OB|取最小时,求直线l的方程;
(2)当|PA|•|PB|取最小值时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知数列{an}满足a2=1,an+1•an=3n,则使an<32014的最大整数n为4028.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}的各项均为正数,前n项和为Sn,且满足2Sn=${a}_{n}^{2}$+n-4
(1)求证{an}为等差数列;
(2)求{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=mx2-2(3m-1)x+9m-1在区间(1,2)中仅有一个零点,求实数m的取值范围.

查看答案和解析>>

同步练习册答案