精英家教网 > 高中数学 > 题目详情
已知m、n、α、β∈R,m<n,α<β,若α、β是函数f(x)=2(x-m)(x-n)-7的零点,则m、n、α、β四个数按从小到大的顺序是
 
(用符号“<”连接起来).
考点:函数零点的判定定理
专题:计算题,函数的性质及应用
分析:由题意可知α、β是函数y=2(x-m)(x-n)与函数y=7的交点的横坐标,且m、n是函数y=2(x-m)(x-n)与x轴的交点的横坐标,从而判断大小关系.
解答: 解:∵α、β是函数f(x)=2(x-m)(x-n)-7的零点,
∴α、β是函数y=2(x-m)(x-n)与函数y=7的交点的横坐标,
且m、n是函数y=2(x-m)(x-n)与x轴的交点的横坐标,
故由二次函数的图象可知,
α<m<n<β;
故答案为:α<m<n<β.
点评:本题考查了函数的零点与函数图象的关系应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)的定义域为R,f(-2)=3,对任意x∈R,f'(x)>3,则f(x)>3x+9的解集为(  )
A、.(-2,2)
B、(-2,+∞)
C、.(-∞,-2)
D、.(-∞,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2cos2
x
2
+sinx,求f(x)的最小正周期和单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列问题不是解决问题的算法的是(  )
A、方程x2-4x+3=0有两个不等的实根
B、解一元一次方程的步骤是去分母、去括号、移项、合并同类项、化系数为1
C、从中山到北京先坐汽车,再坐火车
D、解不等式ax+3>0时,第一步移项,第二步讨论

查看答案和解析>>

科目:高中数学 来源: 题型:

已知α是第二象限角,则cosα的范围
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设t∈R,m,n都是不为1的正数,函数f(x)=mx+t•nx若m=2,n=
1
2
,且t≠0,请判断函数y=f(x)的图象是否具有对称性,如果具有,请求出对称轴方程或对称中心坐标;若不具有,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

某班共有60名学生,现领到10张听取学术报告的入场券,先用抽签法和随机数表法把10张入场券分发下去,试写出过程.

查看答案和解析>>

科目:高中数学 来源: 题型:

过抛物线y2=4x的焦点焦点F作倾斜角为α的直线,交抛物线于A(x1,y1),B(x2,y2)两点,
(1)若α=45°,求线段AB的中点C到抛物线准线的距离;
(2)求证:y1y2=-4.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax+2ln(ax+1),其中实常a∈(1,6).
(Ⅰ)当a=2时,比较f(x)与6x2+6x的大小;
(Ⅱ)已知函数f(x)的图象与直线y=6x相切,证明x∈(1,3)时,(x+3)f(
x
-1
2
)<6x-6.

查看答案和解析>>

同步练习册答案