精英家教网 > 高中数学 > 题目详情
15.已知函数f(x)=1-$\frac{a}{{a}^{x}+b}$为定义在R上的奇函数.
(1)求f(x)的解析式;
(2)判断f(x)的单调性,并用定义证明;
(3)若f(lnm)+f(2lnn)≤1-3lnm,求实数m的取值范围.

分析 (1)法一:由奇函数的性质:f(x)+f(-x)=0列出方程,化简后列出方程组求出a、b的值,结合条件求出f(x)的解析式;
法二:由奇函数的性质:f(x)+f(-x)=0取特值后,列出方程组求出a、b的值,即可求出f(x)的解析式;
(2)先判断出f(x)的单调性,利用函数单调性的定义:取值、作差、变形、定号、下结论进行证明;
(3)由奇函数的性质先化简不等式,构造h(x)=f(x)+x,利用单调性的定义、f(x)的单调性证明h(x)在R上的单调性,由单调性列出不等式,即可求出m的范围.

解答 (1)(法一)因为函数f(x)为R上的奇函数,
所以$f(x)+f(-x)=1-\frac{a}{{{2^x}+b}}+1-\frac{a}{{{2^{-x}}+b}}=0$在R上恒成立.…(2分)
所以 (a-2b)(2x+2-x)+2ab-2b2-2=0恒成立.
所以$\left\{\begin{array}{l}a=2b\\ ab=1+{b^2}\end{array}\right.$,解得$\left\{\begin{array}{l}a=2\\ b=1\end{array}\right.$或$\left\{\begin{array}{l}a=-2\\ b=-1\end{array}\right.$…(4分)
由定义域为R舍去$\left\{\begin{array}{l}a=-2\\ b=-1\end{array}\right.$,
所以$f(x)=1-\frac{2}{{{2^x}+1}}$.…(5分)
(法二)函数的定义域为R,且f(x)是奇函数,
当x=0时,得$f(0)=1-\frac{a}{1+b}=0$,得a=b+1,…(1分)
当x=1时,f(1)+f(-1)=0,得$1-\frac{a}{2+b}+1-\frac{a}{{{2^{-1}}+b}}=0$,
解得:$\left\{\begin{array}{l}a=2\\ b=1\end{array}\right.$,…(3分)
此时$f(x)+f(-x)=1-\frac{2}{{{2^x}+1}}+1-\frac{2}{{{2^{-x}}+1}}=0$为奇函数;         …(4分)
所以$f(x)=1-\frac{2}{{{2^x}+1}}$.…(5分)
(2)函数f(x)为R上的单调增函数.  …(6分)
证明:设x1,x2是R上的任意两个值,且x1<x2
则$f({x}_{1})-f({x}_{2})=1-\frac{2}{{2}^{{x}_{1}}+1}-(1-\frac{2}{{2}^{{x}_{2}}+1})$
=$\frac{2}{{2}^{{x}_{2}}+1}-\frac{2}{{2}^{{x}_{1}}+1}=\frac{2({2}^{{x}_{1}}-{2}^{{x}_{2}})}{({2}^{{x}_{1}}+1)({2}^{{x}_{2}}+1)}$    …(8分)
因为x1<x2,又g(x)=2x为R上的单调增函数,所以$0<{2^{x_1}}<{2^{x_2}}$,
所以f(x1)-f(x2)<0,即f(x1)<f(x2),
所以函数f(x)为R上的单调增函数. …(10分)
(3)因为f(lnm)+f(2lnm-1)≤1-3lnm,即f(lnm)+lnm≤-f(2lnm-1)+1-2lnm
而函数f(x)为R上的奇函数,
所以f(lnm)+lnm≤f(1-2lnm)+1-2lnm.  …(12分)
令h(x)=f(x)+x,下面证明h(x)在R上的单调性:(只要说出h(x)的单调性不扣分)
设x1,x2是R上的任意两个值,且x1<x2
因为x1-x2<0,由(2)知f(x1)-f(x2)<0,
所以h(x1)-h(x2)=f(x1)+x1-(f(x2)+x2
=f(x1)-f(x2)+(x1-x2)<0,
即h(x1)<h(x2),所以h(x)为R上的单调增函数.
因为f(lnm)+lnm≤f(1-2lnm)+1-2lnm,
所以h(lnm)≤h(1-2lnm)所以lnm≤1-2lnm,…(14分)
解得$0<m≤\root{3}{e}$,所以实数m的范围是$({0,\root{3}{e}}]$.  …(16分)

点评 本题考查了奇函数的性质,利用单调性的定义证明函数的单调性,以及构造法解不等式,考查方程思想,函数思想,化简、变形能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.(x2+1)($\frac{1}{x}-1$)5的展开式的常数项为-11.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.齐王与田忌赛马,每场比赛三匹马各出场一次,共赛三次,以胜的次数多者为赢.田忌的上马优于齐王的中马,劣于齐王的上马,田忌的中马优于齐王的下马,劣于齐王的中马,田忌的下马劣于齐王的下马.现各出上、中、下三匹马分组进行比赛,如双方均不知对方马的出场顺序,则田忌获胜的概率是(  )
A.$\frac{1}{3}$B.$\frac{1}{6}$C.$\frac{1}{9}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设等比数列{an}的前n项为Sn,若a1=2,$\frac{{S}_{6}}{{S}_{2}}$=21,则数列{$\frac{1}{{a}_{n}}$}的前5项和为(  )
A.$\frac{1}{2}$或$\frac{11}{32}$B.$\frac{1}{2}$或$\frac{31}{32}$C.$\frac{11}{32}$或$\frac{31}{32}$D.$\frac{11}{32}$或$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知抛物线C:y2=2px(p>0)的焦点为F,且经过点A(1,2),过点F的直线与抛物线C交于P,Q两点.
(Ⅰ)求抛物线C的方程;
(Ⅱ)O为坐标原点,直线OP,OQ与直线x=-$\frac{p}{2}$分别交于S,T两点,试判断$\overrightarrow{FS}$•$\overrightarrow{FT}$是否为定值?若是,求出这个定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.若圆C:x2+y2+Dx+Ey+F=0的半径为r,圆心C到直线l的距离为d,其中D2+E2=F2,且F>0.
(1)求F的取值范围;
(2)求d2-r2的值;
(3)是否存在定圆M既与直线l相切又与圆C相离?若存在,请写出定圆M的方程,并给出证明;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.要得到函数y=cos(2x-$\frac{π}{6}$)的图象,只需将函数y=sin2x的图象(  )
A.向左平移$\frac{π}{12}$个单位B.向左平移$\frac{π}{6}$个单位
C.向右平移$\frac{π}{12}$个单位D.向右平移$\frac{π}{6}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图(1)在直角梯形ABCD中,AD∥BC,∠BAD=$\frac{π}{2}$,AB=BC=$\frac{1}{2}$AD=a,E是AD的中点,O是AC与BE的交点,将△ABE沿BE折起到图(2)中△A1BE的位置,得到四棱锥A1-BCDE.


(Ⅰ)求证:CD⊥平面A1OC;
(Ⅱ)当平面A1BE⊥平面BCDE时,若a=2,求四棱锥A1-BCDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在直角坐标系xOy中,点A在曲线$C:y={({\frac{3}{2}})^x}$上运动,在x轴正半轴取点B,作正三角形OAB,这样的正三角形有(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

同步练习册答案