精英家教网 > 高中数学 > 题目详情
设命题p:关于x 的不等式x2+2ax+4>0 对一切x ∈R 恒成立,q:函数f(x)=-(4-2a)x 在(- ∞,+ ∞)上是减函数.是否存在实数a ,使得两个命题中有且仅有一个是真命题?若存在,求出实数a 的取值范围;若不存在,请说明理由.
解:假设存在实数a 使得命题p 、q 中有且仅有一个是真命题,
不妨设集合A={a|x2+2ax+4>0 对一切x ∈R 恒成立} ,
集合B={a|f(x)=-(4-2a)x 在(- ∞,+ ∞)上是减函数} .
由x2+2ax+4>0 ,得Δ=(2a)2-4 ×4 <0,-2<a<2,
∴A={a|-2<a<2}.
由f(x)=-(4-2a)x 在(- ∞,+ ∞)上是减函数,得4-2a>1,

∵命题p、q中有且仅有一个是真命题,
∴命题p真且命题q假,或命题p假且命题q真.
∴问题转化为求[A∩(CUB]∪[(CUA)∩B].
∵CRA={a|a≤-2或a≥2},CRB=
∴A∩(CRB)=(CRA)∩B={a|a≤-2},
∴实数n的取值范围是{a|a ≤-2 或
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设命题P:关于x的不等式ax2-ax-2a2>1(a>0且a≠1)的解集为{x|-a<x<2a};命题Q:y=lg(ax2-x+a)的定义域为R.如果P或Q为真,P且Q为假,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设命题P:关于x的不等2x<a的解集为∅;命题q:函数y=lg(ax2-x+a)的定义域是R.若“p∨q”为真,“p∧q”为假,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设命题p:关于x的方程4x2+4(a-2)x+1=0有实数根;命题q:函数y=lg(ax2-x+a)的定义域是R.若“p或q”为真,“p且q”为假,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设命题P:关于x的不等式a1x2+b1x+c1>0与a2x2+b2x+c2>0的解集相同;命题Q:
a1
a2
=
b1
b2
=
c1
c2
,则命题Q是命题P的(  )
A、充要条件
B、充分非必要条件
C、必要非充分条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

设命题p:关于x的方程x2+ax+1=0无实根;命题q:函数f(x)=lg(ax2+(a-2)x+
9
8
)的定义域为R,若命题“p或q”是真命题,“p且q”是假命题,求实数a的取值范围
(-2,
1
2
]∪[2,8)
(-2,
1
2
]∪[2,8)

查看答案和解析>>

同步练习册答案